
Guide to The dJVM Model

Version 0.5 Alpha

** DRAFT **

Richard M. Cohen

May 12, 1997

Abstract

This is a brief guide to running the Defensive Java Virtual Machine
(dJVM) model in ACL2. It describes the input format for classes, and the
subset of the JVM instructions supported in version 0.5 Alpha. A tutorial
example illustrates loading class de�nitions into the model and running
them.

(C) Copyright 1996, 1997, Computational Logic, Inc., all rights reserved.

1

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

Contents

1 What is the Defensive Java Virtual Machine? 3

2 Overview of Running the Model 4

2.1 Class-�le converter : 4

3 Class Declarations 5

3.1 Format of Method Declarations : : : : : : : : : : : : : : : : : : : 5
3.2 Format of Field Declarations : 10
3.3 Format of Class Declarations : 10

4 Instructions & Instruction Formats 10

5 Running the dJVM & Inspecting the State 13

5.1 Recognizing various input prompts : : : : : : : : : : : : : : : : : 17
5.2 Example of Running the dJVM 0.5 Model : : : : : : : : : : : : : 17
5.3 Converting CLass Files : 18
5.4 Loading Class Files : 19
5.5 De�ning a dJVM State : 21
5.6 Running the dJVM : 23

A Summary of User-Level Functions 37

B How to Obtain dJVM and ACL2 38

B.1 The dJVM 0.5 Distribution : 38
B.2 The ACL2 Distribution : 38

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

Introduction

This guide provides a brief introduction to the defensive Java Virtual Ma-
chine version 0.5 Alpha (hereafter dJVM 0.5). Readers interested in the de-
tails of the model should refer to The Defensive Java Virtual Machine Spec-
i�cation (version 0.5) available from the Computational Logic web page (at
http://www.cli.com). Readers interested in quickly running examples on the
dJVM 0.5 model should look at the tutorial example in section 5, page 13.

1 What is the Defensive Java Virtual Machine?

The Defensive Java Virtual Machine (dJVM) is Java Virtual Machine that in-
cludes enough run-time checks to assure type-safe execution of programs with-
out recourse to a bytecode veri�er, as is required by the standard Java Virtual
Machine. If a program attempts to perform an unsafe operation, the dJVM
detects the error and signals the error appropriately. This usually means that
the machine halts with an error
ag.

The dJVM 0.5 model is a preliminary de�nition of the dJVM built in a
mathematical logic called ACL2. As well as being a formal logic, ACL2 also
has a mechanical theorem prover. The logic is based on the applicative (or
functional) subset of Common Lisp, and o�ers the ability to execute functions
de�ned in the logic using an underlying Common Lisp implementation.

The Alpha release of the dJVM 0.5 model is a very rough, �rst draft of
a dJVM model. It has been assembled quickly, and has not been tuned for
execution speed, for ease of use, or for easy use of mechanical proof checking.
But is does run some JVM programs, and some theorem have been proven about
it.

The dJVM 0.5 supports 102 of the 202 standard JVM bytecode instructions.
It includes:

� Invoking instance methods, class methods, instance initialization methods
and returning from them

� Invoking overridden instance methods from a superclass

� Instance creation and initialization

� Accessing values in and storing values into instance �elds

� int and long integer data and operations

� Branching instructions

The dJVM 0.5 does leave out several extremely useful features of the JVM.
These features (with the exception of
oating point) are all candidates to be
added to the dJVM in the future.

� Arrays

3

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

2 OVERVIEW OF RUNNING THE MODEL

� Interfaces

� Throwing and handling exceptions

� Dynamic loading of classes

� Concurrency, multithreading, and synchronization

� Floating Point data and operations

2 Overview of Running the Model

The model is de�ned in the ACL2 dialect of Common Lisp [Steele Jr., 1984].
An pre-built executable image for Solaris 2 systems is available. (See section B,
page 38.)

The top-level of the model is a defensive interpreter for the Java Virtual
Machine bytecodes. This interpreter will run JVM bytecoded methods de�ned
in symbolic representations of Java class class �les. Currently there is not a
mechanical tool available to construct this representation directly from standard
Java class �les. But this representation is easily constructed from the output of
the javap class-�le printer, distributed with the Java Developers Kit (JDK).

Section 3 describes the format of the symbolic class declarations. Section 4
lists the JVM instructions supported and the symbolic formats of the instruc-
tions. Section 5 gives an example of converting class �les to the dJVM format,
loading them into the dJVM, running the interpreter, and inspecting the dJVM
state.

2.1 Class-�le converter

The class-�le converter prepares an image of a class �le for execution by the
dJVM. This is a Common Lisp program. As such it lacks any formal speci�ca-
tions, and is not described here. Its use is described in the Guide to The dJVM
Model.

To run it:

> djvm0.5

...

ACL2 Version 1.8 built January 13, 1996 15:24:42.

Initialized with dJVM 0.38 of 4/18/1997.

...

ACL2 !>:q

Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).

ACL2>(convert-class-file "Point")

"Point.lisp"

4

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

This produces a new �le, Point.lisp, containing the converted class de�nition,
which can be loaded into the dJVM. Figure 1 shows the resulting �le.

3 Class Declarations

Here's a simple Java class declaration.

class Point extends Object f
int x, y;

public int x() f
return this.x;

g

public void move (int x, int y) f
this.x = x;

this.y = y;

return;

g
g

After compiling this with the standard Java compiler from JavaSoft's JDK 1.1,
we use javap to print the class �le. The output from javap is shown in �gure 2.
As we shall see, the dJVM representation of class Point will look quite similar
to this. In particular the format of dJVM method declarations is a simple
transformation from the format displayed by javap.

As we shall see below, the form that javap uses to display methods is very
similar to that used by the dJVM.

3.1 Format of Method Declarations

The dJVM declaration forms for the two methods in class Point are show
below in �gures 3 and 4. The method declaration is constructed using the
dJVM function make-java-method. That function takes keyword arguments
which give the various attributes of a JVM method declaration. The method
declarations show below simply re
ect the information present in the javap

output. Again the type signatures of the methods have been converted to the
class-�le format.

Each keyword argument takes a single value. The order of keyword argu-
ments does not a�ect the value of the expression.

Details of Method Declarations

Here are detailed explanations of the keyword arguments to the method declara-
tion constructor make-java-method. In ACL2 (as in Common Lisp) keywords
begin with a colon, for example, :name.

5

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

3 CLASS DECLARATIONS

;; dJVM class file constructed from Point.class

;;

;; [Converted on 4/22/1997 at 4:53 p.m.
;; using Make-dJVM-Class version 0.5 alpha 1]

(in-package "ACL2")

(set-verify-guards-eagerness 2)

(defun class-Point ()

(MAKE-CLASS-DECL
:NAME "Point"

:ACCESS-FLAGS 'NIL
:SUPERCLASS "java.lang.Object"

:SUPERCLASSES NIL

:SURROGATE (REF-TO-NULL)
:INTERFACES NIL

:FIELDS (LIST (MAKE-FIELD :NAME "x"
:SIG "I"

:PROTECTION ':DEFAULT-PROTECTION
...)

(MAKE-FIELD :NAME "y"

...))
:METHODS (LIST (MAKE-JAVA-METHOD :NAME "x"

:SIG "()I"
:CLASS-NAME "Point"

:PROTECTION ':PUBLIC

:ACCESS-FLAGS 'NIL
:MAX-STACK 1

:MAX-LOCALS 1
:BODY '((0 ALOAD_0)

(1 GETFIELD "Point" "x" "I")
(4 IRETURN)

)

:EXCEPTION-TABLE NIL
:ATTRS NIL)

...)
:ATTRS '(("SourceFile" "Point.java")

))

) ;; end of class Point

(thm (class-decl-p (class-Point)))

;;

;; End of File

;;

Figure 1: Converted version of class Point

6

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

3.1 Format of Method Declarations

class Point extends java.lang.Object

/* ACC_SUPER bit set */

int x;

int y;

public int x();

/* Stack=1, Locals=1, Args_size=1 */

public void move(int,int);

/* Stack=2, Locals=3, Args_size=3 */

Point();

/* Stack=1, Locals=1, Args_size=1 */

Method int x()

0 aload_0

1 getfield #4 <Field Point.x I>

4 ireturn

Method void move(int,int)

0 aload_0

1 iload_1

2 putfield #4 <Field Point.x I>

5 aload_0

6 iload_2

7 putfield #5 <Field Point.y I>

10 return

Method Point()

0 aload_0

1 invokespecial #3 <Method java.lang.Object.<init>()V>

4 return

Figure 2: Output from javap

7

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

3 CLASS DECLARATIONS

(make-java-method :name "x"

:class-name "Point"

:sig "()I"

:access-flags '()

:protection ':public

:max-stack 1

:max-locals 1

:body '((0 aload 0)

(1 getfield "Point" "x" "I")

(4 ireturn))

:exception-table nil

:attrs nil)

Figure 3: Declaration for Method x

(make-java-method :name "move"

:class-name "Point"

:sig "(II)V"

:access-flags '()

:protection ':public

:max-stack 2

:max-locals 1

:body '((0 aload 0)

(1 iload 1)

(2 putfield "Point" "x" "I")

(5 aload 0)

(6 iload 2)

(7 putfield "Point" "y" "I")

(10 return))

:exception-table nil

:attrs nil)

Figure 4: Declaration for Method move

8

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

3.1 Format of Method Declarations

(make-java-method :name "<init>"

:class-name "Swill"

:sig "()V"

:access-flags '()

:protection ':public

:max-stack 1

:max-locals 1

:body '((0 aload_0)

(1 invokespecial "java.lang.Object" "<init>" "()V")

(4 return))

:exception-table nil

:attrs nil))

Figure 5: Declaration for Point Method <init>

:name the simple name of the method, as a string.

:class-name the name of the class in which this method is being declared. (It
is convenient to be able to identify the class of a method. So we record
this information as part of the method declaration.)

:sig the type signature of the method. This uses the format prescribed for class
�les. The format is \(T*)R", where T stands for an argument type signa-
ture (as described below for �eld declarations), and R is the result type-
signature of the method. The return-type may be a �eld type-signature
or the letter V, which denotes a void method that does not return a value.

:access-
ags one of :static, :final, :synchronized, :native, or :abstract.

:protection one of :public, :private, :protected, or :default-protection.

:max-stack the maximum stack size (in words).

:max-locals the maximum number of local variables used (in words).

:body the bytecode body of the method. The bytecode instructions are repre-
sented symbolically.

:exception-table the exception table for the method. The dJVM 0.5 Alpha-
does not support exceptions. So this should always be nil.

:attrs other attributes associated with the method. The dJVM 0.5 Alphadoes
not honor any attributes. So this should always be nil.

9

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

4 INSTRUCTIONS & INSTRUCTION FORMATS

3.2 Format of Field Declarations

The �eld declarations for the two �elds in class Point are shows in �gure 6.
The default protection attribute has been made explicit, and the �eld type has
been translated into the JVM internal format.

The internal format for type signatures of �elds is:

� I for int.

� J for long.

� Lxyz; for a reference to class xyz.

The dJVM 0.5 Alpha does not support any �eld attributes.

(make-field :access-flags '()

:name "x"

:sig "I"

:protection ':default-protection

:attrs nil)

(make-field :access-flags '()

:name "y"

:sig "I"

:protection ':default-protection

:attrs nil)

Figure 6: Field Declarations for Point

3.3 Format of Class Declarations

The complete declaration for class Point is given in �gure 7. The actual
method declarations are abbreviated by de�ning functions to construct the
dJVM method declarations show above. The function constructing the method
declaration for Point.move is shown in �gure 8.

4 Instructions & Instruction Formats

The dJVM supports 103 of the JVM instructions.
Here is a list of the supported instructions and their dJVM symbolic format.

In this list the following place-holder names are used:

� index | 8-bit unsigned integer

� wide-index | 16-bit unsigned integer

� byte-constant | 8-bit signed integer

10

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

(defun class-decl-for-point ()

(make-class-decl :name "Point"

:surrogate (make-tv :ref 0)

:status 'initialized

:access-flags '(:public)

:superclass "java.lang.Object"

:superclasses '("java.lang.Object")

:interfaces nil

:fields (list (make-field :access-flags '()

:name "x"

:sig "I"

:protection ':default-protection

:attrs nil)

(make-field :access-flags '()

:name "y"

:sig "I"

:protection ':default-protection

:attrs nil))

:methods (list (point-x-method)

(point-move-method))

:attrs nil

))

Figure 7: Class Declaration for Point

11

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

4 INSTRUCTIONS & INSTRUCTION FORMATS

(defun point-move-method ()

(make-java-method :name "move"

:class-name "Point"

:sig "(II)V"

:access-flags '()

:protection ':public

:max-stack 2

:max-locals 1

:body '((0 aload 0)

(1 iload 1)

(2 putfield "Point" "x" "I")

(5 aload 0)

(6 iload 2)

(7 putfield "Point" "y" "I")

(10 return))

:exception-table nil

:attrs nil))

Figure 8: Function Constructor for Method Point.move

� short-constant | 16-bit signed integer

� offset | 16-bit signed o�set

� wide-offset | 32-bit signed o�set

� "Class" | a class name

� "field" | a �eld name

� "method" | a method name

� "I" | a �eld signature (e.g., int)

� "(II)J" | a method signature (e.g., taking arguments (int,int) and
returning long)

1. (aconst null)

2. (aload index)

3. (aload 0)

4. (aload 1)

5. (aload 2)

6. (aload 3)

7. (aload wide

wide index)

8. (areturn)

9. (astore index)

10. (astore 0)

11. (astore 1)

12. (astore 2)

13. (astore 3)

14. (astore wide

wide-index)

15. (bipush

byte-constant)

16. (dup)

17. (dup2)

18. (dup2 x1)

19. (dup x1)

20. (dup x2)

21. (getfield "Class"

"field" "I")

12

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

22. (getstatic

"Class" "field"

"I")

23. (goto offset)

24. (goto w

wide-offset)

25. (i2l)

26. (i2s)

27. (iadd)

28. (iand)

29. (iconst 0)

30. (iconst 1)

31. (iconst 2)

32. (iconst 3)

33. (iconst 4)

34. (iconst 5)

35. (iconst m1)

36. (idiv)

37. (if acmpeq

offset)

38. (if acmpne

offset)

39. (if icmpeq

offset)

40. (if icmpge

offset)

41. (if icmpgt

offset)

42. (if icmple

offset)

43. (if icmplt

offset)

44. (if icmpne

offset)

45. (ifeq offset)

46. (ifge offset)

47. (ifgt offset)

48. (ifle offset)

49. (iflt offset)

50. (ifne offset)

51. (ifnonnull

offset)

52. (ifnull offset)

53. (iinc index

byte-constant)

54. (iload index)

55. (iload 0)

56. (iload 1)

57. (iload 2)

58. (iload 3)

59. (iload wide

wide-index)

60. (imul)

61. (ineg)

62. (invokespecial

"Class" "method"

"(II)J")

63. (invokestatic

"Class" "method"

"(II)J")

64. (invokevirtual

"Class" "method"

"(II)J")

65. (ior)

66. (ireturn)

67. (istore index)

68. (istore 0)

69. (istore 1)

70. (istore 2)

71. (istore 3)

72. (isub)

73. (l2i)

74. (ladd)

75. (land)

76. (lcmpg)

77. (lconst 0)

78. (lconst 1)

79. (ldiv)

80. (lload index)

81. (lload 0)

82. (lload 1)

83. (lload 2)

84. (lload 3)

85. (lload wide

wide-index)

86. (lookupswitch

...)

87. (lstore index)

88. (lstore 0)

89. (lstore 1)

90. (lstore 2)

91. (lstore 3)

92. (lstore wide

wide-index)

93. (new "Class")

94. (nop)

95. (pop)

96. (pop2)

97. (putfield "Class"

"field" "I")

98. (putstatic

"Class" "field"

"I")

99. (return)

100. (sipush

short-constant)

101. (swap)

102. (tableswitch ...)

5 Running the dJVM & Inspecting the State

This section shows an example of:

� converting class �les into the dJVM format

� loading the converted �les into the dJVM model

13

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

� running the main method and examining the dJVM state along the way.

There are two Java classes used in this example: class Lbreak2, shown in
�gure 9, and class Int Array 10, shown in �gure 10

This example was run using the dJVM 0.5 Alpha 1 model running in ACL2
version 1.8.

This example was run using an executable image of the dJVM model using
ACL2 version 1.8 built on GNU Common Lisp (GCL). Most of the example
is performed in ACL2, but a few places (particularly the discussion of input
prompts) illustrates behavior that is GCL-speci�c. If you build the dJVMmodel
using ACL2 built on a di�erent underlying Common Lisp implementation, the
form of the prompts may di�er.

14

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

// Test instanceof
// Labelled break and continue Statements

public class Lbreak2 f

private static void cleanup (Int_Array_10 x, int a, int b) f
x.set(a, b);

g

private static boolean check (int p) f
if (p == 8) return true;
else return false;

g

public static void main () f
int p, i = 8;
int total = 0;

Int_Array_10 a = new Int_Array_10 (6, 1, 2, 4, 3, 5, 8, 7, 9, 0);
Lbreak2 lb = new Lbreak2();

test: if (Lbreak2.check(i)) f
// try f

for (int j =0; j < 10; j++) f
if (j > i) f
Lbreak2.cleanup (a, j, (int)11);
break test;

g
if (a.elt(j) == 4) f
i = 6;

a.set(2, 111);
continue;

g
a.set(j, 1111);

g
// g
// finally f Lbreak2.cleanup (a, i, (int)7); g

g

Lbreak2.cleanup (a, (int)9, (int)7);

for (p = 0; p < a.length(); p++) f
// System.out.println("a[" + p + "] = " + a[p]);

total += a.elt(p);

// System.out.println("total = " + total);
g
if (total != 5697) Fail.genError();

if (lb instanceof Lbreak2) Fail.genError();
g

g

Figure 9: Class Lbreak2

15

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

public class Int_Array_10 f

static int a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;

// This should trigger generation of an explicit class initialization.

static int a9 = 1;

// Constructors. One with initial values.

public Int_Array_10 () fg;

public Int_Array_10 (int x0, int x1, int x2, int x3, int x4,
int x5, int x6, int x7, int x8, int x9) f

a0 = x0; a5 = x5;

a1 = x1; a6 = x6;
a2 = x2; a7 = x7;

a3 = x3; a8 = x8;

a4 = x4; a9 = x9;
return;

g

// Return the length of the array. In our case, it is always 10.

public int length () f
return 10;

g

// Accessor method

public int elt (int index) f
switch (index) f
case 0: return a0; case 5: return a5;
case 1: return a1; case 6: return a6;

case 2: return a2; case 7: return a7;
case 3: return a3; case 8: return a8;

case 4: return a4; case 9: return a9;

default: return 0;
g

g

// Alterant method

public void set (int index, int value) f
switch (index) f
case 0: a0 = value; break; case 5: a5 = value; break;

case 1: a1 = value; break; case 6: a6 = value; break;
case 2: a2 = value; break; case 7: a7 = value; break;

case 3: a3 = value; break; case 8: a8 = value; break;

case 4: a4 = value; break; case 9: a9 = value; break;
default: return;

g
return;

g
g

Figure 10: Class Int Array 10

16

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5.1 Recognizing various input prompts

5.1 Recognizing various input prompts

The standard ACL2 command prompt is ACL2 !>.
If you cause an \error" in ACL2, ACL2 will enter the low-level debugger.

You will see a message such as

Correctable error: Console interrupt.

Signalled by LP.

If continued: Type :r to resume execution, or :q to quit to top level.

Broken at COND. Type :H for Help.

ACL2>>

The prompt ACL2>> indicates that control has passed to the GCL debugger.
You can exit from the GCL debugger and return the the ACL2 command level
via the debugger command :q (for quit). When you give this command, you
should get the standard ACL2 prompt again.

ACL2>>:q

ACL2 !>

At the ACL2 command level, the :q command exits from the ACL2 com-
mand loop and passed control to the GCL command loop. You can then type
a GCL or Lisp command, such as the expression (+ 1 2 3) as shown below.

ACL2 !>:q

Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).

ACL2>(+ 1 2 3)

6

You can subsequentally give the command (lp) to reenter the ACL2 command
loop. Normally ACL2 command and function names are not case-sensitive. So
you can type (LP), (lp), or even (Lp). When you reenter the ACL2 command
loop, ACL2 will print its greeting banner, and then print its standard input
prompt.

ACL2>(LP)

ACL2 Version 1.8. Level 1. Cbd "/cli/project/os/java/Model/djvm0.39/".

Type :help for help.

ACL2 !>

5.2 Example of Running the dJVM 0.5 Model

% ./djvm0.50.sunos-5.i86pc

GCL (GNU Common Lisp) Version(2.2) Tue Nov 28 19:05:01 CST 1995

Licensed under GNU Public Library License

Contains Enhancements by W. Schelter

17

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

Loading init.lsp

Finished loading init.lsp

ACL2 Version 1.8 built November 28, 1995 23:41:03.

Initialized with dJVM 0.50 of 5/5/1997.

See :doc note8 for recent changes.

NOTE!! Proof trees are disabled in ACL2. To enable them in emacs,

look under the ACL2 source directory in interface/emacs/README.doc;

and, to turn on proof trees, execute :START-PROOF-TREE in the ACL2

command loop. Look in the ACL2 documentation under PROOF-TREE.

ACL2 Version 1.8. Level 1. Cbd "/cli/project/os/java/Model/djvm0.39/".

Type :help for help.

ACL2 !>(in-package "ACL2")

"ACL2"

5.3 Converting CLass Files

We must drop out of the ACL2 command loop to run the class-�le converter,
because the converter is written in raw Common Lisp. We do this via the :q

(for \quit") command to ACL2. This exits from the ACL2 command loop and
begins the command loop of the underlying Common Lisp system.

ACL2 !>:q

Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).

We �rst convert the class Int Array 10. This will read the class �le "Int Array 10.class"

and write the dJVM image of that class to "Int Array 10.lisp".

ACL2>(convert-class-file "tests/Int_Array_10")

"tests/Int_Array_10.lisp"

Now convert the class Lbreak2.

ACL2>(convert-class-file "tests/Lbreak2")

Warning: The instruction INSTANCEOF is not implemented in the dJVM 0.5 model.

"tests/Lbreak2.lisp"

The class-�le converter issues a warning message if it notices an instruction not
supported by the dJVM 0.5 model. The wide instruction is not handled, and
may cause spurious warning messages from the converter as well as producing
a class de�nition that will not run in the dJVM model.

We now return the the ACL2 command loop by calling the function lp.
ACL2 prints the greeting banner and prompts for a command.

18

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5.4 Loading Class Files

ACL2>(lp)

ACL2 Version 1.8. Level 1. Cbd "/cli/project/os/java/Model/djvm0.39/".

Type :help for help.

5.4 Loading Class Files

Now we load the converted class �les. First we load the class Int Array 10 from
the converted �le Int Array 10.lisp. The standard ACL2 function for loading
source �les is \ld". The ld function reads each form or command from the
�le and evaluates it. In this �rst example of using ld each command in the
�le will be printed before it is evaluated, followed by any output from ACL2's
evaluation of the command.

The ld function operates essentially by calling the ACL2 command loop
recursively with the �le as the input stream. ACL2 indicates this \second level"
of the command loop by printing the \prompt" with a double \>" (i.e. as \ACL2
!>>").

ACL2 !>(ld "tests/Int_Array_10.lisp" :ld-pre-eval-print t)

ACL2 Version 1.8. Level 2. Cbd "/cli/project/os/java/Model/djvm0.39/".

Type :help for help.

ACL2 !>>(IN-PACKAGE "ACL2")

"ACL2"

ACL2 !>>(SET-VERIFY-GUARDS-EAGERNESS 2)

2

ACL2 !>>(DEFUN

CLASS-INT_ARRAY_10 NIL

(MAKE-CLASS-DECL

:NAME "Int_Array_10"

:ACCESS-FLAGS '(:SUPER :PUBLIC)

:SUPERCLASS "java.lang.Object"

:SUPERCLASSES NIL

:SURROGATE (REF-TO-NULL)

:INTERFACES NIL

:FIELDS (LIST (MAKE-FIELD :NAME "a0" :SIG

"I" :PROTECTION ':DEFAULT-PROTECTION

:ACCESS-FLAGS '(:STATIC)

:ATTRS NIL)
...

)

:METHODS (LIST (MAKE-JAVA-METHOD :NAME "<init>"

:SIG "()V"

:CLASS-NAME "Int_Array_10"

:PROTECTION ':PUBLIC

:ACCESS-FLAGS 'NIL

19

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

:MAX-STACK 1

:MAX-LOCALS 1

...)
...

)

:ATTRS '(("SourceFile" "Int_Array_10.java"))))

The following output is ACL2's commentary as it processes this command.

Since CLASS-INT_ARRAY_10 is non-recursive, its admission is trivial.

We could deduce no constraints on the type of CLASS-INT_ARRAY_10.

The guard conjecture for CLASS-INT_ARRAY_10 is trivial to prove. CLASS-

INT_ARRAY_10 is compliant with Common Lisp.

Summary

Form: (DEFUN CLASS-INT_ARRAY_10 ...)

Rules: NIL

Warnings: None

Time: 0.06 seconds (prove: 0.00, print: 0.00, other: 0.06)

CLASS-INT_ARRAY_10

...

ACL2 !>>Bye.

:EOF

This printed the full class de�nition as it appears in the �le, along with the
transcript of any proofs required to admit the class de�nition into the ACL2
logic. If we don't want to see this output (as we usually don't), we can use
the ld-quietly function. (It is loaded into ACL2 as part of the miniscule
user-interface support for the dJVM.)

Using ld-quietly if the �le loads successfully, ACL2 will print :EOF and
then prompt for another command. If there is an error loading the �le, ACL2
will print :ERROR instead of :EOF. Depending on the sort of error encountered,
ACL2 may print an error message before printing :ERROR. For more complete
information on the nature of the error and where it occurred in the �le, use the
raw call to ld as shown above. (You may have to exit from the debugger (via
:q) before issuing the ld command. You can tell whether control has passed
into the debugger by looking at the input prompt, as described in section 5.1,
page 17.)

ACL2 !>(ld-quietly "tests/Lbreak2.lisp")

ACL2 Version 1.8. Level 2. Cbd "/cli/project/os/java/Model/djvm0.39/".

Type :help for help.

:EOF

20

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5.5 De�ning a dJVM State

5.5 De�ning a dJVM State

We now de�ne a Lisp function to construct an initial dJVM state with the classes
Int Array 10 and Lbreak2 loaded. Loading the converted class �les de�ned the
functions Class-Int Array 10 and Class-Lbreak2. These function names are
derived mechanically from the class names, so we can deduce the function names
for any converted class �le.

We simply compose calls to Djvm-Load-Class-Decl for each class we want
to load into the state. The value 99 is given in the calls indicates the maximum
number of instructions to let the class initialization method run. Int Array 10

has a class initialization method, but it runs to completion in fewer than 99
instructions. You can give a larger number here to be sure your call initialization
has su�cent time to �nish.

ACL2 !>(defun lbreak2-djvm ()

(Djvm-Load-Class-Decl (Class-lbreak2)

99

(Djvm-Load-Class-Decl (Class-Int_Array_10)

99

(set-djvm-status ':running

(Initial-Djvm)))))

ACL2 now processes the function de�nition. Before accepting the de�nition,
ACL2 will attempt to prove that the function always terminates and that the
guards for all functions called in its body are satis�ed. If ACL2 cannot success-
fully complete these proofs, it will not accept the function de�nition. Normally
the transcript of its proof attempt is printed to the terminal. Here's a brief
example.

Since LBREAK2-DJVM is non-recursive, its admission is trivial. We

observe that the type of LBREAK2-DJVM is described by the theorem

(CONSP (LBREAK2-DJVM)). We used the :type-prescription rule DJVM-LOAD-

CLASS-DECL.

The non-trivial part of the guard conjecture for LBREAK2-DJVM is

Goal

(AND

(WEAK-DJVM-P (INITIAL-DJVM))

(CLASS-DECL-P (CLASS-INT_ARRAY_10))

(DJVM-P (SET-DJVM-STATUS :RUNNING (INITIAL-DJVM)))

(CLASS-DECL-P (CLASS-LBREAK2))

(DJVM-P (DJVM-LOAD-CLASS-DECL (CLASS-INT_ARRAY_10)

99

(SET-DJVM-STATUS :RUNNING (INITIAL-DJVM))))).

But we reduce the conjecture to T, by the :executable-counterparts

of INITIAL-DJVM, WEAK-DJVM-P, CLASS-INT_ARRAY_10, CLASS-DECL-P, SET-

DJVM-STATUS, DJVM-P, CLASS-LBREAK2, DJVM-LOAD-CLASS-DECL and IF.

21

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

Q.E.D.

That completes the proof of the guard theorem for LBREAK2-DJVM. LBREAK2-

DJVM is compliant with Common Lisp.

Summary

Form: (DEFUN LBREAK2-DJVM ...)

Rules: ((:EXECUTABLE-COUNTERPART INITIAL-DJVM)

(:EXECUTABLE-COUNTERPART WEAK-DJVM-P)

(:EXECUTABLE-COUNTERPART CLASS-INT_ARRAY_10)

(:EXECUTABLE-COUNTERPART CLASS-DECL-P)

(:EXECUTABLE-COUNTERPART SET-DJVM-STATUS)

(:EXECUTABLE-COUNTERPART DJVM-P)

(:EXECUTABLE-COUNTERPART CLASS-LBREAK2)

(:EXECUTABLE-COUNTERPART DJVM-LOAD-CLASS-DECL)

(:EXECUTABLE-COUNTERPART IF)

(:TYPE-PRESCRIPTION DJVM-LOAD-CLASS-DECL))

Warnings: None

Time: 0.17 seconds (prove: 0.08, print: 0.01, other: 0.08)

LBREAK2-DJVM

Let's make sure that our function really constructs a dJVM state.

ACL2 !>(djvm-p (lbreak2-djvm))

T

Let's check that the state has initialized and is running normally. If the class
initialization failed to terminate or completed abnormally, the status will not
be \:running".

We can interogate the status by explicitly looking at the djvm-status �eld.

ACL2 !>(djvm-status (lbreak2-djvm))

:RUNNING

We can also express this as a putative theorem for the ACL2 theorem prover
to verify. Since the theorem prover can run our compiled Lisp functions when
given concrete (i.e., non-symbolic) expressions, this is about as fast as the query
above.

ACL2 !>(thm (equal (djvm-status (lbreak2-djvm)) ':running))

But we reduce the conjecture to T, by the :executable-counterparts

of LBREAK2-DJVM, DJVM-STATUS and EQUAL.

Q.E.D.

Summary

Form: (THM ...)

Rules: ((:EXECUTABLE-COUNTERPART LBREAK2-DJVM)

(:EXECUTABLE-COUNTERPART DJVM-STATUS)

(:EXECUTABLE-COUNTERPART EQUAL))

22

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5.6 Running the dJVM

Warnings: None

Time: 0.18 seconds (prove: 0.16, print: 0.00, other: 0.02)

Proof succeeded.

5.6 Running the dJVM

Show the initial static variables of Int Array 10. At this point they should all
be zero.

ACL2 !>(show-object 3 (lbreak2-djvm))

(3 A-CLASS (:NAME "Int_Array_10")

(:DATA ("a9" :INT 1)

("a8" :INT 0)

("a7" :INT 0)

("a6" :INT 0)

("a5" :INT 0)

("a4" :INT 0)

("a3" :INT 0)

("a2" :INT 0)

("a1" :INT 0)

("a0" :INT 0))

(:STATUS LOADED)

(:LOCK NIL)

(:LOADER (:REF 0)))

We now run the dJVM from the initial state, stopping just before returning
from Int Array 10.<init>(IIIIIIIIII)V, so that we can see that the instance
initializer's parameters have been recoreedd in the class' static variables.

(It may sound odd to record data from an instance initialization in static
variables, but that is how Int Array 10 is de�ned.)

We can get there by specifying to run for 40 steps, or until we hit that PC.
The basic way to run the dJVMmodel is to use the function Run-Class-Main

(de�ned in initial-djvm.lisp). This function takes a class name, a clock value
(i.e., a step count), and a dJVM state. It runs the public, static main method
of the speci�ed class for a maximum of \clock" steps.

However, the function Run-Main, de�ned in show-fns.lisp, is useful when
runningg the dJVM interactively. The function Run-Main has the additional
property that when the machine stops with a non-empty call-stack, then the
local varible 999 of the current-call frame will hold the number of instructions
executed. Thus it is clear if the machine completed or halted before exhausting
the clock value. Using Run-Main you can specify that the public, static main
method should be executed until a given pc value is encountered.

Here's an example using the step count.

ACL2 !>(show-stack (run-main "Lbreak2" (+ 40) (lbreak2-djvm)))

(:STATUS= :RUNNING

:STACK= (FRAME (:CLASS "Int_Array_10")

(:METHOD (:FULL-NAME "Int_Array_10.<init>(IIIIIIIIII)V")

23

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS)

(:BODY ----------

(48 PUTSTATIC "Int_Array_10" "a9" "I")

(51 RETURN)

----------))

(:CIA 48)

(:PC 51)

(:LOCALS (0 :REF 5)

(1 :INT 6)

(2 :INT 1)

(3 :INT 2)

(4 :INT 4)

(5 :INT 3)

(6 :INT 5)

(7 :INT 8)

(8 :INT 7)

(9 :INT 9)

(10 :INT 0)

(999 :INT 40))

(:STACK)

(:OBJECT-REF (:REF 5))

(:NEW-REFS))

(FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(23 INVOKESPECIAL

"Int_Array_10" "<init>" "(IIIIIIIIII)V")

(26 ASTORE_3)

(27 NEW "Lbreak2")

----------))

(:CIA 23)

(:PC 26)

(:LOCALS (1 :INT 8) (2 :INT 0))

(:STACK (:REF 5))

(:OBJECT-REF (:REF 0))

(:NEW-REFS (:REF 5))))

Here's an example specifying the pc to stop at. We must still specify a step-
count. So we just give a large value and count on the :to-pc argument to stop
execution. Of course if the given pc is not encountered before the step-count is
exhausted, Run-Main will still terminate after than many steps.

ACL2 !>(show-stack (run-main "Lbreak2" 100 (lbreak2-djvm) :to-pc 51))

(:STATUS= :RUNNING

:STACK= (FRAME (:CLASS "Int_Array_10")

(:METHOD (:FULL-NAME "Int_Array_10.<init>(IIIIIIIIII)V")

(:PROTECTION :PUBLIC)

24

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5.6 Running the dJVM

(:ACCESS-FLAGS)

(:BODY ----------

(48 PUTSTATIC "Int_Array_10" "a9" "I")

(51 RETURN)

----------))

(:CIA 48)

(:PC 51)

(:LOCALS (0 :REF 5)

(1 :INT 6)

(2 :INT 1)

(3 :INT 2)

(4 :INT 4)

(5 :INT 3)

(6 :INT 5)

(7 :INT 8)

(8 :INT 7)

(9 :INT 9)

(10 :INT 0)

(999 :INT 40))

(:STACK)

(:OBJECT-REF (:REF 5))

(:NEW-REFS))

(FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(23 INVOKESPECIAL

"Int_Array_10" "<init>" "(IIIIIIIIII)V")

(26 ASTORE_3)

(27 NEW "Lbreak2")

----------))

(:CIA 23)

(:PC 26)

(:LOCALS (1 :INT 8) (2 :INT 0))

(:STACK (:REF 5))

(:OBJECT-REF (:REF 0))

(:NEW-REFS (:REF 5))))

We can look at the array values, and see that they have changes as the dJVM
runs.

ACL2 !>(show-object 3 (run-main "Lbreak2" 100 (lbreak2-djvm) :to-pc 51))

(3 A-CLASS (:NAME "Int_Array_10")

(:DATA ("a9" :INT 0)

("a8" :INT 9)

("a7" :INT 7)

("a6" :INT 8)

("a5" :INT 5)

("a4" :INT 3)

("a3" :INT 4)

25

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

("a2" :INT 2)

("a1" :INT 1)

("a0" :INT 6))

(:STATUS LOADED)

(:LOCK NIL)

(:LOADER (:REF 0)))

Since we will be running Lbreak2.main many times, it is convenient to de�ne
a little function so that we don't have to type the full expression each time.
We'll de�ne a function that just takes a step count and applies it to running
Lbreak2.main.

ACL2 !>(defun run-lbreak (n)

(declare (xargs :guard (integerp n)))

(if (>= n 0)

(run-main "Lbreak2" n (lbreak2-djvm))

nil))

Since RUN-LBREAK is non-recursive, its admission is trivial. We could

deduce no constraints on the type of RUN-LBREAK.

The non-trivial part of the guard conjecture for RUN-LBREAK is

Goal

(IMPLIES (AND (INTEGERP N) (<= 0 N))

(DJVM-P (LBREAK2-DJVM))).

But we reduce the conjecture to T, by the :executable-counterparts

of LBREAK2-DJVM and DJVM-P.

Q.E.D.

That completes the proof of the guard theorem for RUN-LBREAK. RUN-

LBREAK is compliant with Common Lisp.

Summary

Form: (DEFUN RUN-LBREAK ...)

Rules: ((:EXECUTABLE-COUNTERPART LBREAK2-DJVM)

(:EXECUTABLE-COUNTERPART DJVM-P)

(:DEFINITION NOT))

Warnings: None

Time: 0.26 seconds (prove: 0.05, print: 0.00, other: 0.21)

RUN-LBREAK

Let's use it to look at the array values again.

ACL2 !>(show-object 3 (run-lbreak 40))

(3 A-CLASS (:NAME "Int_Array_10")

(:DATA ("a9" :INT 0)

("a8" :INT 9)

("a7" :INT 7)

26

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5.6 Running the dJVM

("a6" :INT 8)

("a5" :INT 5)

("a4" :INT 3)

("a3" :INT 4)

("a2" :INT 2)

("a1" :INT 1)

("a0" :INT 6))

(:STATUS LOADED)

(:LOCK NIL)

(:LOADER (:REF 0)))

One more instruction will get us passed the return instruction in the method
Int Array 10.<init> and just about to execute the instruction after the invokespecial
call to it. Note that the cia register in the frame points to the invokespecial
instruction, because that was the last instruction executed in this frame. The pc
register points to the following instruction, since that is the next one to be exe-
cuted in this frame (now that the method Int Array 10.<init>(IIIIIIIIII)V

has completed).

ACL2 !>(show-stack (run-lbreak (+ 41)))

(:STATUS= :RUNNING

:STACK= (FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(23 INVOKESPECIAL

"Int_Array_10" "<init>" "(IIIIIIIIII)V")

(26 ASTORE_3)

(27 NEW "Lbreak2")

----------))

(:CIA 23)

(:PC 26)

(:LOCALS (1 :INT 8)

(2 :INT 0)

(999 :INT 41))

(:STACK (:REF 5))

(:OBJECT-REF (:REF 0))

(:NEW-REFS)))

Now we'll stop execution just after allocating an instance of Lbreak2. Note
that a reference to the instance appears in the new-refs of the current frame,
indicating that the instance is considered to be uninitialized in the context of
this frame.

ACL2 !>(show-stack (run-main "Lbreak2" 100 (lbreak2-djvm) :to-pc 30))

(:STATUS= :RUNNING

:STACK= (FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

27

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

(:ACCESS-FLAGS :STATIC)

(:BODY ---------- (27 NEW "Lbreak2")

(30 DUP)

(31 INVOKESPECIAL "Lbreak2" "<init>" "()V")

----------))

(:CIA 27)

(:PC 30)

(:LOCALS (1 :INT 8)

(2 :INT 0)

(3 :REF 5)

(999 :INT 43))

(:STACK (:REF 6))

(:OBJECT-REF (:REF 0))

(:NEW-REFS (:REF 6))))

Here's the new instance.

ACL2 !>(show-object 6 (run-main "Lbreak2" 100 (lbreak2-djvm) :to-pc 30))

(6 INSTANCE (:CLASS (:REF 4))

(:DATA ("Lbreak2") ("java.lang.Object"))

(:LOCK NIL))

If we run a little further the instance (at heap address 6) is considered to be
initialized (within this frame), as evidenced by its absence from new-refs.

ACL2>(show-stack (run-main "Lbreak2" 100 (lbreak2-djvm) :to-pc 34))

(:STATUS= :RUNNING

:STACK= (FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(31 INVOKESPECIAL "Lbreak2" "<init>" "()V")

(34 ASTORE 4)

(36 ILOAD_1)

----------))

(:CIA 31)

(:PC 34)

(:LOCALS (1 :INT 8) (2 :INT 0) (3 :REF 5) (999 :INT 49))

(:STACK (:REF 6))

(:OBJECT-REF (:REF 0))

(:NEW-REFS)))

The compiler generated the loop-test at the bottom of the loop, and branches to
it from the top the �rst time through. The test is at instruction 105. Stopping
at pc = 103 has the loop variable (j) as the top element of the stack. The
�rst time through the loop we note that j=0. (The value of j is stored as local
variable number 5).

ACL2 !>(show-stack (run-main "Lbreak2" 100 (lbreak2-djvm) :to-pc 103))

(:STATUS= :RUNNING

28

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5.6 Running the dJVM

:STACK= (FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(101 ILOAD 5)

(103 BIPUSH 10)

(105 IF_ICMPLT -56)

----------))

(:CIA 101)

(:PC 103)

(:LOCALS (1 :INT 8)

(2 :INT 0)

(3 :REF 5)

(4 :REF 6)

(5 :INT 0)

(999 :INT 62))

(:STACK (:INT 0))

(:OBJECT-REF (:REF 0))

(:NEW-REFS)))

After executing the loop once, the value of j should be 1, and the �rst element
of the array (static variable a0 in class Int Array 10) should be set to 1111.
Let's look at the stack.

ACL2 !>(show-stack (run-main "Lbreak2" 100 (lbreak2-djvm) :to-pc 103 :ntimes 2))

(:STATUS= :RUNNING

:STACK= (FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(101 ILOAD 5)

(103 BIPUSH 10)

(105 IF_ICMPLT -56)

----------))

(:CIA 101)

(:PC 103)

(:LOCALS (1 :INT 8)

(2 :INT 0)

(3 :REF 5)

(4 :REF 6)

(5 :INT 1)

(999 :INT 87))

(:STACK (:INT 1))

(:OBJECT-REF (:REF 0))

(:NEW-REFS)))

And let's check that the �rst element of the array (static variable a0 in class
Int Array 10) has the value 1111.

29

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

ACL2 !>(show-object 3 (run-main "Lbreak2" 100 (lbreak2-djvm) :to-pc 103 :ntimes 2))

(3 A-CLASS (:NAME "Int_Array_10")

(:DATA ("a9" :INT 0)

("a8" :INT 9)

("a7" :INT 7)

("a6" :INT 8)

("a5" :INT 5)

("a4" :INT 3)

("a3" :INT 4)

("a2" :INT 2)

("a1" :INT 1)

("a0" :INT 1111))

(:STATUS LOADED)

(:LOCK NIL)

(:LOADER (:REF 0)))

Since we're going to want to look at the stack and object 3 many times, we
will de�ne a macro that shows both values. This time we de�ne a macro,
rather than a function, because in ACL2 macro calls can take optional keyword
parameters. Thus we can call the macro show-lbreak de�ned below with just a
clock argument, or give both a clock argument and a :to-pc keyword argument,
or with a clock argument and both a :to-pc keyword argument and a :ntimes

keyword argument.

ACL2 !>(defmacro show-lbreak (clock &key to-pc ntimes)

`(let ((new-djvm (run-main "Lbreak2" ,clock (lbreak2-djvm)

:to-pc ,to-pc :ntimes ,ntimes)))

(list (show-stack new-djvm)

(show-object 3 new-djvm))))

Summary

Form: (DEFMACRO SHOW-LBREAK ...)

Rules: NIL

Warnings: None

Time: 0.02 seconds (prove: 0.00, print: 0.00, other: 0.02)

SHOW-LBREAK

If you are running the dJVMmodel as interpreted code, rather than as compiled
code, you may have to expand the GCL stack to accomocate this computation.
This is because the GCL compiler converts tail-recursive functions into iterative
functions. This eliminates the function-call overhead and the run-time stack
space required for a recursive call. If you are running the model as interpreted
Lisp code, this optimization has not been done, and each dJVM instruction step
consumes some of the GCL stack. In the standard GCL image, 1000 steps is
more than can be handled interpretively.

In order to increase the GCL stack, you must exit from the ACL2 command
loop via

:q

30

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5.6 Running the dJVM

and then execute the following command at the GCL command level:

(setq SYSTEM:*MULTIPLY-STACKS* 4)

This will cause the a garbage collection, and then ACL2/DJVM start-up banner
will be printed again after the stack size has been increased.

The loop-exit branch corresponding to break test in the Java program
(page 15) is at address 63. Let's stop there, and see what the array looks like.

ACL2 !>(show-lbreak 1000 :to-pc 63)

((:STATUS= :RUNNING

:STACK= (FRAME (:CLASS "Int_Array_10")

(:METHOD (:FULL-NAME "Int_Array_10.elt(I)I")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS)

(:BODY ----------

(60 GETSTATIC "Int_Array_10" "a1" "I")

(63 IRETURN)

(64 GETSTATIC "Int_Array_10" "a2" "I")

----------))

(:CIA 60)

(:PC 63)

(:LOCALS (0 :REF 5)

(1 :INT 1)

(999 :INT 98))

(:STACK (:INT 1))

(:OBJECT-REF (:REF 0))

(:NEW-REFS))

(FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(69 INVOKEVIRTUAL

"Int_Array_10" "elt" "(I)I")

(72 ICONST_4)

(73 IF_ICMPNE 16)

----------))

(:CIA 69)

(:PC 72)

(:LOCALS (1 :INT 8)

(2 :INT 0)

(3 :REF 5)

(4 :REF 6)

(5 :INT 1))

(:STACK)

(:OBJECT-REF (:REF 0))

(:NEW-REFS)))

(3 A-CLASS (:NAME "Int_Array_10")

31

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

(:DATA ("a9" :INT 0)

("a8" :INT 9)

("a7" :INT 7)

("a6" :INT 8)

("a5" :INT 5)

("a4" :INT 3)

("a3" :INT 4)

("a2" :INT 2)

("a1" :INT 1)

("a0" :INT 1111))

(:STATUS LOADED)

(:LOCK NIL)

(:LOADER (:REF 0))))

Oops! We hit instruction 63 in Int Array 10.elt! But that instruction is only
executed when fetching array element 1. So it will only be encountered once in
the \test" loop. So we want to give the keyword argument :ntimes 2 in the
call to show-lbreak to get passed this point.

ACL2 !>(show-lbreak 1000 :to-pc 63 :ntimes 2)

((:STATUS= :RUNNING

:STACK= (FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(60 INVOKESTATIC "Lbreak2"

"cleanup" "(LInt_Array_10;II)V")

(63 GOTO 45)

(66 ALOAD_3)

----------))

(:CIA 60)

(:PC 63)

(:LOCALS (1 :INT 6)

(2 :INT 0)

(3 :REF 5)

(4 :REF 6)

(5 :INT 7)

(999 :INT 259))

(:STACK)

(:OBJECT-REF (:REF 0))

(:NEW-REFS)))

(3 A-CLASS (:NAME "Int_Array_10")

(:DATA ("a9" :INT 0)

("a8" :INT 9)

("a7" :INT 11)

("a6" :INT 1111)

("a5" :INT 1111)

("a4" :INT 1111)

("a3" :INT 4)

32

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5.6 Running the dJVM

("a2" :INT 111)

("a1" :INT 1111)

("a0" :INT 1111))

(:STATUS LOADED)

(:LOCK NIL)

(:LOADER (:REF 0))))

ACL2 !>(show-lbreak 1000 :to-pc 103 :ntimes 8)

((:STATUS= :RUNNING

:STACK= (FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(101 ILOAD 5)

(103 BIPUSH 10)

(105 IF_ICMPLT -56)

----------))

(:CIA 101)

(:PC 103)

(:LOCALS (1 :INT 6)

(2 :INT 0)

(3 :REF 5)

(4 :REF 6)

(5 :INT 7)

(999 :INT 240))

(:STACK (:INT 7))

(:OBJECT-REF (:REF 0))

(:NEW-REFS)))

(3 A-CLASS (:NAME "Int_Array_10")

(:DATA ("a9" :INT 0)

("a8" :INT 9)

("a7" :INT 7)

("a6" :INT 1111)

("a5" :INT 1111)

("a4" :INT 1111)

("a3" :INT 4)

("a2" :INT 111)

("a1" :INT 1111)

("a0" :INT 1111))

(:STATUS LOADED)

(:LOCK NIL)

(:LOADER (:REF 0))))

Instruction 144 is the test whether the sum total of the array is 5697. Let's stop
there and see what's on the operand stack.

ACL2 !>(show-stack (run-main "Lbreak2" 1000 (lbreak2-djvm) :to-pc 144))

(:STATUS= :RUNNING

:STACK= (FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

33

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(141 SIPUSH 5697)

(144 IF_ICMPEQ 6)

(147 INVOKESTATIC "Fail" "genError" "()V")

----------))

(:CIA 141)

(:PC 144)

(:LOCALS (1 :INT 6)

(2 :INT 5697)

(3 :REF 5)

(4 :REF 6)

(5 :INT 7)

(0 :INT 10)

(999 :INT 455))

(:STACK (:INT 5697)

(:INT 5697))

(:OBJECT-REF (:REF 0))

(:NEW-REFS)))

Now we just run the dJVM until it stops. It will stop because the instance-of
instruction has not yet been implemented in the this version of the dJVMmodel.
The status �eld shows that the machine has halted, because it is not :running,
and the value shows why the machine has halted.

ACL2 !>(show-stack (run-main "Lbreak2" 1000 (lbreak2-djvm)))

(:STATUS= (:ERROR "Unrecognized instruction"

(INSTANCEOF "Lbreak2"))

:STACK=

(FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(152 INSTANCEOF "Lbreak2")

(155 IFEQ 6)

----------))

(:CIA 152)

(:PC 152)

(:LOCALS (1 :INT 6)

(2 :INT 5697)

(3 :REF 5)

(4 :REF 6)

(5 :INT 7)

(0 :INT 10)

(999 :INT 458))

(:STACK (:REF 6))

(:OBJECT-REF (:REF 0))

(:NEW-REFS)))

34

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5.6 Running the dJVM

ACL2 allows us to assign to variables at the top-level of the command loop
using the function assign.

ACL2 !>(assign x '(alpha bravo charlie))

(ALPHA BRAVO CHARLIE)

We can then refer to the varibles in the top-level forms using the function @

applied to the variable name. Let's check the value of the variable x.

ACL2 !>(@ x)

(ALPHA BRAVO CHARLIE)

However, we note that when we use assign as a top-level function, the new value
of the variable is printed. The dJVM state with Lbreak2 and Int Array 10

loaded is ~400 lines when printed. So we want to avoid printing this needlessly.
The assign* macro has the same e�ect as the assign macro, but it returns the
variable's name instead of the variable's new value.

ACL2 !>(assign* y '(delta echo))

Y

We can now assign the a dJVM state to the variable LB without having to see
the entire state printed out.

ACL2 !>(assign* LB (RUN-MAIN "Lbreak2" 1000 (LBREAK2-DJVM) :TO-PC 103 :NTIMES 10))

LB

Now we can look at just the parts of that state that we want to see. Recall that
normally Lisp and ACL2 ignore the case of function names and variable names
in input. So we can type either LB or lb below and get the same result.

ACL2 !>(show-stack (@ lb))

(:STATUS= (:ERROR "Unrecognized instruction"

(INSTANCEOF "Lbreak2"))

:STACK=

(FRAME (:CLASS "Lbreak2")

(:METHOD (:FULL-NAME "Lbreak2.main()V")

(:PROTECTION :PUBLIC)

(:ACCESS-FLAGS :STATIC)

(:BODY ----------

(152 INSTANCEOF "Lbreak2")

(155 IFEQ 6)

----------))

(:CIA 152)

(:PC 152)

(:LOCALS (1 :INT 6)

(2 :INT 5697)

(3 :REF 5)

(4 :REF 6)

(5 :INT 7)

(0 :INT 10)

35

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

5 RUNNING THE DJVM & INSPECTING THE STATE

(999 :INT 458))

(:STACK (:REF 6))

(:OBJECT-REF (:REF 0))

(:NEW-REFS)))

And we can look at several parts without having to recompute the state.

ACL2 !>(show-object 3 (@ lb))

(3 A-CLASS (:NAME "Int_Array_10")

(:DATA ("a9" :INT 7)

("a8" :INT 9)

("a7" :INT 11)

("a6" :INT 1111)

("a5" :INT 1111)

("a4" :INT 1111)

("a3" :INT 4)

("a2" :INT 111)

("a1" :INT 1111)

("a0" :INT 1111))

(:STATUS LOADED)

(:LOCK NIL)

(:LOADER (:REF 0)))

The dJVM 0.5 model does not support the instanceof instruction, but we can
make that test by explicitly using a function from the dJVM interpreter. The
dJVM 0.5 model includes the predicate instance-of-class-p. It simply lacks
the instruction version of the test. The function takes 4 arguments: an object,
a class name, the heap, and the class table.

Let's see whether it says the object at heap address 6 is really an instance
of the class Lbreak2. . .

ACL2 !>(let ((djvm (@ lb)))

(instance-of-class-p (deref '(:ref 6) (djvm-heap djvm))

"Lbreak2"

(djvm-heap djvm)

(djvm-class-table djvm)))

T

Now let's exit from ACL2 back to GCL...

ACL2 !>:q

Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP).

and then exit from GCL back to the Unix shell. If your version of ACL2 is built
upon a di�erent implementation of Common Lisp, the function to exit from Lisp
will probably be di�erent.

ACL2>(lisp:bye)

%

This concludes the dJVM 0.5 tutorial.

36

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

A Summary of User-Level Functions

This section gives a summary of the functions typically used to run the dJVM
0.5 Alphamodel. Since the model is implemented in ACL2, and ACL2 is a
language of pure functions, each of these functions takes the dJVM state as an
argument and returns a value, usually a new dJVM state.

� (djvm-step djvm)

This function executes one instruction in the dJVM given state, djvm.

The argument djvm must be a dJVM state with a non-empty call-stack,
and the top-most call-frame must contain a bytecoded method. (Other-
wise ACL2 will report a run-time guard violation.)

The return value of the function will be a new dJVM state with the result
of attempting to execute the next instruction. As well as any error-halts
caused by the individual instruction, djvm-step itself will report if the
initial state has an invalid PC value or if the next instruction is not one
de�ned in the dJVM 0.5 Alphamodel.

� (djvm-run n-steps djvm)

This function calls djvm-step on the state djvm, and then on the resulting
state, and so on, until n-steps instructions have been executed (or the
error
ag is set).

� (Initial-Djvm) { constructs an initial dJVM state containing the classes
class and object.

� (djvm-load-class-decl (class-decl n-steps djvm)

This function adds the class to the class table, and runs its method
<clinit> method if it has one. n-steps gives the maximum number
of steps to run.

This is not a real class-loader in the common Java sense.

� (Run-Class-Main class-name n-steps djvm)

This function will run the method main in the named class (if it is declared
public static void). n-steps gives the maximum number of steps to
run.

� (run-main class-name n-steps djvm &key to-pc ntimes)

This is not part of the dJVM model itself. This is part of a small, crude
package for testing and debugging the model and observing program exe-
cution. [See the �le show-fns.lisp.]

� (show-frame djvm)

Displays the current-frame. The body of the current method is abbrevi-
ated.

37

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

B HOW TO OBTAIN DJVM AND ACL2

� (show-stack djvm)

Displays all frames in the current call-stack.

� (show-heap djvm)

Displays all objects in the heap.

� (show-object addr djvm)

Displays one object from the heap.

� (run-to-pc n-steps to-pc n-times djvm)

Runs the dJVM starting in state djvm until either n-steps steps have
been taken or until the PC register has taken on the value top-pc exactly
n-times times or until execution halts, whichever occurs �rst.

B How to Obtain dJVM and ACL2

They are both available via anonymous FTP from ftp.cli.com.

B.1 The dJVM 0.5 Distribution

The full distribution includes:

� executable images of the dJVM 0.5 model for Solaris 2 systems on both
Sparc-based systems and x86-based systems,

� source �les describing the model as executable ACL2,

� the draft technical report explaining the model,

� examples,

� associated auxilliary �les (e.g., a make�le, etc.)

� this guide.

B.2 The ACL2 Distribution

The ACL2 v1.8 distribution was used to build the public version of dJVM 0.5.
It is currently available from ftp.cli.com. ACL2 version 1.9 is expected to be
publicly released shortly.

38

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

REFERENCES

References

[Bevier, 1995] William R. Bevier.
Tools for describing typed data structures in acl2.
Technical report, Computational Logic, Inc., September 1995.

[Kaufmann and Moore, 1994] Matt Kaufmann and J Strother Moore.
Design goals of acl2.
Technical Report 101, Computational Logic, Inc., August 1994.

[Kaufmann and Moore, 1996] M. Kaufmann and J S. Moore.
ACL2: An Industrial Strength Version of Nqthm.
In Proceedings of the Eleventh Annual Conference on Computer Assurance

(COMPASS-96), pages 23{34. IEEE Computer Society Press, June 1996.
Revised version to appear in IEEE Trans. on Software Engineering, 1997.

[R.S. Boyer, 1991] J S. Moore R.S. Boyer, M.J. Kaufmann.
A short note on some advantages of acl2.
Technical Report 215, Computational Logic, Inc., 1991.

[Steele Jr., 1984] Guy L. Steele Jr.
Common LISP: The Language.
Digital Press, 1984.

39

Draft Version 0.5 Alpha { May 12, 1997 { 17:07

