
CLI Technical Report 121 1

9 10 10.95 12

An Executable Model of the Synergy File System

William R. Bevier

Richard M. Cohen

Computational Logic, Inc.

1717 West 6th Street, Suite 290

Austin, Texas 78703-4776

Telephone: 512 322 9951

Email: bevier@cli.com, cohen@cli.com

Technical Report 121 October, 1996

Computational Logic, Inc.

1717 West Sixth Street, Suite 290

Austin, Texas 78703-4776

TEL: +1 512 322 9951

FAX: +1 512 322 0656

Copyright c
 2004 Computational Logic, Inc.

CLI Technical Report 121 i

Contents

1 Introduction 1

2 A Brief Introduction to ACL2 2

3 Synergy File System Constants 5

4 The Basic File Space 5

4.1 The Model . 5

4.2 Evaluation of the Model . 8

4.3 Theorems about the Model . 9

5 The File Space 9

5.1 The Model . 9

5.2 Evaluation of the Model . 15

5.3 Theorems about the Model . 16

6 The File Table 17

6.1 The Model . 17

6.2 Evaluation of the Model . 19

6.3 Theorems about the Model . 20

7 Processes 20

7.1 The Model . 20

7.2 Evaluation of the Model . 22

8 Garbage Collection 23

9 The Basic Access System 24

9.1 The Model . 24

9.2 Evaluation of the Model . 29

10 Discretionary Access Control 34

CLI Technical Report 121 ii

11 The Unix File System Interface 36

11.1 The Model . 36

11.2 Evaluation of the Model . 42

CLI Technical Report 121 1

1 Introduction

This report presents the de�nitions and theorems that comprise an executable model of

the Synergy File System speci�cation. The model is written in ACL2 [KM94], and closely

follows a speci�cation for the interface written in Z [Spi89]. Unlike the Z speci�cation, the

ACL2 model can be tested. Since ACL2 includes a theorem prover, proofs of theorems about

the model can be mechanically checked. The ability to execute and reason about a model

provides a way to get increased assurance that one has speci�ed desirable behavior.

The executable portion of ACL2, consisting of function de�nitions, macros, and global

variables is very much like Common Lisp [Ste84, Ste90]. ACL2 contains some additional

constructs, like defthm which make use of the automated theorem prover that is part of the

ACL2 system.

To achieve executability in this model, we sometimes make implementation choices. We

try to make these as innocuous as possible in terms of their e�ect on the behavior of the

system. An example of such a choice is the use of numbers as �le identi�ers. Other data

types might serve equally well.

This document closely follows the structure of the Z speci�cation [BCT95]. After a brief

introduction to ACL2 in Section 2, Section 4 lays out the central structure of the �le system:

the association of �le identi�ers and �les. Section 5 adds directories and pathnames to this

structure. Section 6 presents data strutures for opening and closing �les. Section 7 introduces

processes. Section 8 presents algorithms for garbage collection. Section 9 combines the

previous sections into the �rst layer that resembles Unix �le system functionality. Section

10 introduces discretionary access control. Finally, Section 11 models operations at the level

of the Unix �le system interface on successful outcomes. We do not model any of the many

return codes.

The main bene�t of writing this model is not clearly visible from reading a document

such as this. One must run the model or prove theorems about it interactively to get the

full impact. Doing this allows one to get a stronger impression as to whether what one has

speci�ed is what one wants.

Constructing this model caused us to �nd numerous errors in the Z speci�cation. Some

of these were simple typographical errors. Another class of problems was somewhat unique

to Z, having to do with the way that schema inclusion matches variables with the same

names (modulo decorations). At several places in the Z speci�cation, we had failed to com-

bine schemas correctly because certain names matched unintentionally, or because intended

matches did not occur. These are hard to �nd by inspection. We found these errors in the

careful implementation of the speci�cation, building functions that take explicit parameters

rather than relying on Z's name matching.

Simply building the ACL2 model led us to �nd some errors. More were found when we

tested the model. Yet others were found when we attempted to prove some theorems about

CLI Technical Report 121 2

the model. As a result of this experience, we feel that while Z can be quite useful for conveying

information precisely, it can be diÆcult to get the details right for a large speci�cation. The

executability of ACL2 allows one to construct and test a prototype implemenation with a

modest amount of e�ort. Proving theorems about the resulting model can provide even more

assurance, but at a potentially high cost for the e�ort put into the proofs.

The structure of the Z speci�cation had a strong impact on the structure of the ACL2

model. In fact, we were able to closely follow the Z speci�cation in the model. We believe

that the model could be proved to satisfy the speci�cation, but we have not done this.

Notes on Style. We present a functional model of the �le system. In a C implementation,

the state of the �le system is accessed globally and is directly modi�ed. In this model,

operations on the system take a state parameter as argument, and return a resulting state.

This allows us to more easily execute the model and reason about it, since we can keep track

of a sequence of system states.

Functions are printed in the syntax of Common Lisp, not conventional mathematical

notation. The conventional x + y is displayed as (+ x y). A de�ned function written

conventionally as fn (x; y) is displayed as (fn x y).

ACL2 is an untyped language. In place of types we de�ne functions in the logic that

recognize an expression of a given type. Such a function is a predicate, and returns a boolean

value. For example, instead of declaring n to be of type number, we write (numberp n)

where appropriate.

2 A Brief Introduction to ACL2

In this section we summarize some of the features of ACL2. We rely to a large extent on the

reader's assumed familiarity with Common Lisp.

Global Variables. The toplevel ACL2 form assign is used to assign a value to a global

variable. The operator @ returns the value of a global variable. For example, after executing

(assign x 3), the value of (@ x) is 3.

Defun. The defun form creates a function. In the example below, the function foo is

de�ned. foo has two arguments, x and y. Assumptions about the arguments are declared

(optionally) in the guard. In this example, x and y are declared to be integers. The guard

is evaluated at run time, and causes an error if it is not satis�ed. Following the declaration

is the body of function.

CLI Technical Report 121 3

(defun foo (x y)

(declare (xargs :guard (and (integerp x) (integerp y))))

(* (+ x y) 2))

Multiple Values. A function may return more than one value. One way of returning

multiple values is to return a list of values. However, using the ACL2 multiple value primi-

tives, mv and mv-let, allows the system to check for the right number of values at the time

a de�nition is processed. In this example, dog returns a multiple value, and cat uses an

mv-let to unbind the values. cat returns the sum of a number and its double. mv and

mv-let correspond to Common Lisp's values and multiple-value-bind.

(defun dog (x) (declare (xargs :guard (integerp x))) (mv x (* 2 x)))

(defun cat (y)

(declare (xargs :guard (integerp y)))

(mv-let (i j) (dog y) (+ i j)))

Defthm. A defthm form proposes a theorem about previously introduced functions. The

mechanical proof checker within ACL2 attempts a proof of the proposed theorem. In this ex-

ample, we suggest the theorem that the function foo returns an even number if its arguments

are integers.

(defthm evenp-foo

(implies (and (integerp x) (integerp y)) (evenp (foo x y))))

De
ist. deflist is a macro de�ned by the authors that generates a recursive function

which recognizes a list, all of whose elements satisfy a given unary predicate. Additionally,

it automatically generates a large number of defthm forms that inform the theorem prover

of important properties of the new function. The following example introduces a function

integer-listp that recognizes a list if integers.

(deflist integer-listp (l) integerp)

Defalist. defalist is a macro de�ned by the authors that generates a recognizer for

a typed alist.1 Theorems about accessing and constructing alists of the given type are

automatically generated. The following form introduces a function symbol->integer that

recognizes an alist which maps symbols to integers.

(defalist symbol->integer (l) (symbolp . integerp))

1
An alist is short for association list. An alist can be used to associate a value with a key. Lisp provides

the lookup function assoc to �nd the value associated with a key in an alist.

CLI Technical Report 121 4

Defstructure. defstructure is a macro that provides a capability similar to Common

Lisp's defstruct. It allows one to de�ne a record structure, including its accessor, con-

structor and update functions. The following example de�nes a person record structure

consisting of height and weight �elds.

(defstructure person height weight)

The automatically generated functions include the following.

(make-person :height h :weight w) construct a person structure

(person-height p) access the height �eld of a person

(person-weight p) access the weight �eld of a person

(update-person p :weight w) update the weight �eld of a person

(person-p p) a predicate that recognizes a person

structure

Functions on lists. This is a brief synopsis of functions on lists. Some of these are

primitive ACL2 functions, and some are de�ned by the authors.

nil the empty list

(consp x) x is a non-empty list

(cons x list) the list whose �rst element is x,

and whose remainder is list

(car list) the �rst element of a non-empty list

(cdr list) all but the �rst element of a non-empty list

(append a b) the concatenation of two lists

(nonlast list) all but the last element of list

(member-equal x list) true if x is a member of list

(nth-seg i j list) the sublist of list beginning at

o�set i of length j

(put-seg-fill i seg list) replaces the sublist of list beginning at

o�set i with list seg

Functions on alists. This section provides a brief synopsis of functions on alists, all

written by the authors.

CLI Technical Report 121 5

(binding key alist) gives the value associated with key in alist

(bind key value alist) returns an update alist, with key bound to value

(bound? key alist) true if key is bound to a value in alist

(rembind key alist) returns an updated alist, with key unbound

(domain alist) the list of keys in the alist

(range alist) the list of values in the alist

(all-bound? list alist) true when every key in list is bound in alist

(inv-bound? value alist) value occurs in the range of alist

(inv-binding value alist) the key to which value is bound in alist

3 Synergy File System Constants

This section contains constants that are arbitrary, but that must be de�ned for Synergy File

Sytem model to be executable. pathname-limit is the maximum number of names in a

path name.

(defun pathname-limit () 20)

4 The Basic File Space

4.1 The Model

This section models the basic data structure of the �le space, a mapping from �le identi�ers

(�ds) to �les. We model a byte as either a number or a literal. This allows us later to

minimize the complexity of modeling directories.

(defun literalp (x)

(and (symbolp x) (not (equal x t)) (not (equal x nil))))

(defun bytep (x) (or (naturalp x) (literalp x)))

An object is a �le, i.e., satis�es the predicate filep if it is a list of bytes. The predicate

file-listp recognizes a list of �les.

(deflist filep (l) bytep)

CLI Technical Report 121 6

(deflist file-listp (l) filep)

We de�ne the pad character for �les to be 0. The function padfile creates a �le of length

n, consisting entirely of pad characters.

(defun pad () 0)

(defun padfile (n)

(declare (xargs :guard (naturalp n)))

(make-list n :initial-element (pad)))

We model a �le identi�er as a natural number. We use the function excess-natural

(de�ned by the authors) to compute an unused �le identi�er. The function fid-listp

recognizes a list of �le identi�ers.

(defun fidp (x) (naturalp x))

(deflist fid-listp (l) fidp)

The predicate fid->file recognizes an alist that maps �le identi�ers to �les. A data

structure of this type is the central object to be managed by the �le system. We call this

data structure by the name fcontents throughout this document. fcontents satis�es the

predicate basic-file-space if it is a mapping from �ds to �les.

(defalist fid->file (l) (fidp . filep))

(defun basic-file-space (fcontents) (fid->file fcontents))

The printed representation of an entry in fcontents appears as a list whose �rst element

is the �le identi�er, and whose remainder is the contents of the �le. Here is example containin

two �les, with identi�ers 43 and 57. The contents of �le 43 is (a b c d e f g), and the

contents of �le 57 is (w x y z).

'((43 a b c d e f g) (57 w x y z))

CLI Technical Report 121 7

The function newfid returns a �le identi�er not currently in the domain of fcontents.

The following theorem states that the function indeed returns an unused value. The function

filelength gives the length of the �le associated with an �d.2

(defun newfid (fcontents) (excess-natural (domain fcontents)))

(defthm member-newfid-domain-fcontents

(implies (basic-file-space fcontents)

(not (member-equal (newfid fcontents)

(domain fcontents)))))

(defun filelength (fcontents fid?)

(declare (xargs :guard

(and (basic-file-space fcontents) (fidp fid?)

(bound? fid? fcontents))))

(length (binding fid? fcontents)))

The following functions model the four transitions on a basic �le system state. create-bfs

binds a new �d to an empty �le. destroy-bfs removes a �le identi�er and its associated �le

from fcontents. read-bfs returns the contents of �le fid? beginning at the given o�set

for the given length. write-bfs writes the sequence of bytes data? to the designated �le at

the given o�set.

(defun create-bfs (fcontents fid?)

(declare (xargs :guard

(and (basic-file-space fcontents) (fidp fid?)

(not (bound? fid? fcontents)))))

(bind fid? nil fcontents))

(defun destroy-bfs (fcontents fid?)

(declare (xargs :guard

(and (basic-file-space fcontents) (fidp fid?)

(bound? fid? fcontents))))

(rembind fid? fcontents))

2
We follow the convention of using variable names undecorated with punctuation to represent state

variables. Variable names decorated with a question mark (?) are considered to represent input parameters.

CLI Technical Report 121 8

(defun read-bfs (fcontents fid? offset? length?)

(declare (xargs :guard

(and (basic-file-space fcontents) (fidp fid?)

(bound? fid? fcontents) (naturalp offset?)

(naturalp length?))))

(nth-seg offset? length? (binding fid? fcontents)))

(defun write-bfs (fcontents fid? offset? data?)

(declare (xargs :guard

(and (basic-file-space fcontents) (fidp fid?)

(bound? fid? fcontents) (naturalp offset?)

(filep data?))))

(bind fid?

(put-seg-fill offset? data? (binding fid? fcontents) (pad))

fcontents))

4.2 Evaluation of the Model

Here is a sequence of basic �le system operations. Let fc0 be the initial, empty �le space.

fc1 and fc2 are the results of creating two empty �les. In fc3 we write to �le 1 beginning

at o�set 0. In fc4 we write to �le 2 beginning at o�set 4. Note that, following Unix �le

system semantics, pad characters are generated at the front. In fc5 �le 1 is destroyed.

(assign fc0 nil)

(assign fc1 (create-bfs (@ fc0) 1))

(equal (@ fc1) '((1)))

(assign fc2 (create-bfs (@ fc1) 2))

(equal (@ fc2) '((1) (2)))

(assign fc3 (write-bfs (@ fc2) 1 0 '(a b c d e f g h i j)))

(equal (@ fc3) '((1 a b c d e f g h i j) (2)))

(assign fc4 (write-bfs (@ fc3) 2 4 '(w x y z)))

CLI Technical Report 121 9

(equal (@ fc4) '((1 a b c d e f g h i j) (2 0 0 0 0 w x y z)))

(assign fc5 (destroy-bfs (@ fc4) 1))

(equal (@ fc5) '((2 0 0 0 0 w x y z)))

The following example illustrates the execution of read-bfs. Reading �le 2 from state

fc5 gives the following result.

(equal (read-bfs (@ fc5) 2 2 4) '(0 0 w x))

4.3 Theorems about the Model

The following theorems show that each of the basic �le transitions preserve the basic �le

space invariant. That is, given an initial fcontents that satis�es basic-file-space, the

result of the operation also satis�es this predicate.

(defthm basic-file-space-create-bfs

(implies (and (basic-file-space fcontents) (fidp fid?))

(basic-file-space (create-bfs fcontents fid?))))

(defthm basic-file-space-destroy-bfs

(implies (basic-file-space fcontents)

(basic-file-space (destroy-bfs fcontents fid?))))

(defthm basic-file-space-write-bfs

(implies (and (basic-file-space fcontents) (fidp fid?)

(bound? fid? fcontents) (naturalp offset?)

(filep data?))

(basic-file-space

(write-bfs fcontents fid? offset? data?))))

5 The File Space

5.1 The Model

In this section we extend the basic �le space model to incorporate directories and pathnames.

A syllable is modeled as a literal. syllable-listp recognizes a list of syllables. A pathname

is modeled as a syllable list.

CLI Technical Report 121 10

(defun syllablep (x) (literalp x))

(deflist syllable-listp (l) syllablep)

(defun path-namep (l) (syllable-listp l))

A directory is modeled as an alist that maps syllables to �ds. We store directories in the

�le system in \
attened" form. That is, a directory that has the following two entries ((mail

. 1) (programs .2)) will be
attened into the list (mail 1 programs 2), so that it will

satisfy filep. This is accomplished by the function flatten-alist (not displayed here).

The inverse operation is make-alist, which can construct a directory alist from a list of

alternating syllables and �le identi�ers.

(defalist directoryp (l) (syllablep . fidp))

The following predicate recognizes a list of alternating syllables and �le identi�ers, i.e.,

a
attened directory.

(defun alternating-syllable-fid-listp (l)

(cond

((atom l) (equal l nil))

((syllablep (car l))

(and (not (atom (cdr l))) (fidp (cadr l))

(alternating-syllable-fid-listp (cddr l))))

(t nil)))

parsedir is our interface for parsing a
attened directory into a directory structure, and

unparsedir is its inverse. The theorems below establish that, given appropriate inputs,

these two functions produce results of the right type.

(defun parsedir (l)

(declare (xargs :guard (alternating-syllable-fid-listp l)))

(make-alist l))

(defun unparsedir (d)

(declare (xargs :guard (directoryp d)))

(flatten-alist d))

CLI Technical Report 121 11

(defthm directoryp-parsedir

(implies (alternating-syllable-fid-listp l)

(directoryp (parsedir l))))

(defthm alternating-syllable-fid-listp-unparsedir

(implies (directoryp d)

(alternating-syllable-fid-listp (unparsedir d))))

We model two types of �les: regular �les and directories. The function ftypep recognizes

a �le type. The state variable ftyp is an alist that maps each �le identi�er to its type. The

functions add-ftype and delete-ftype modify the �le type alist by adding or removing an

entry, respectively.

(defun ftypep (x) (member-equal x '(reg dir)))

(defalist fid->ftype (l) (fidp . ftypep))

(defun add-ftype (ftyp fid? ftyp?)

(declare (xargs :guard

(and (fid->ftype ftyp) (fidp fid?) (ftypep ftyp?)

(not (bound? fid? ftyp)))))

(bind fid? ftyp? ftyp))

(defun delete-ftype (ftyp fid?)

(declare (xargs :guard

(and (fid->ftype ftyp) (fidp fid?)

(bound? fid? ftyp))))

(rembind fid? ftyp))

The following predicates are used to state several important invariants on the �le space.

Let lst be a list of �le identi�ers. Then (all-dirs-are-dir-files lst fcontents ftyp)

holds when every �d in lst whose type is dir is bound in fcontents to a �le that is a

attened directory.

(defun all-dirs-are-dir-files (lst fcontents ftyp)

(if (atom lst) t

(let ((fid (car lst)))

(and (if (equal (binding fid ftyp) 'dir)

(alternating-syllable-fid-listp

(binding fid fcontents))

t)

(all-dirs-are-dir-files (cdr lst) fcontents ftyp)))))

CLI Technical Report 121 12

Let lst be a list of �le identi�ers. Then (all-dirs-map-to-legal-fids lst fcontents

ftyp) is true when every �d in lst whose type is dir is bound to a directory �le that contains

only �ds that occur in fcontents. That is, no directory contains dangling �le identi�ers.

(defun all-dirs-map-to-legal-fids (lst fcontents ftyp)

(if (atom lst) t

(let ((fid (car lst)))

(and (if (equal (binding fid ftyp) 'dir)

(all-bound? (range (parsedir (binding fid fcontents)))

fcontents)

t)

(all-dirs-map-to-legal-fids (cdr lst) fcontents ftyp)))))

The following theorem captures the main consequence of all-dirs-map-to-legal-fids.

If fid denotes a directory �le bound in fcontents, then the �le identi�ers bound in that

directory all occur in fcontents.

(defthm all-bound?-range-parsedir-binding-instance

(implies (and (all-dirs-map-to-legal-fids (domain fcontents)

fcontents ftyp)

(equal (binding fid ftyp) 'dir)

(bound? fid fcontents) (alistp fcontents))

(all-bound? (range (parsedir (binding fid fcontents)))

fcontents)))

A �le space consists of three state variables: fcontents, the assocation of �le identi�ers

with �les; ftyp the association of �le identi�ers with �le types; and rootfid, the �le identi�er

that is considered the root �d. We organize these state components into a record structure

called fs, for �le space.

The predicate filespace makes states explicit requirements on a legal �le space. Each

of the individual state variables has the right type. Additionally, the domains of ftyp and

fcontents are equal. So, if an �d is bound in ftyp, then it's also bound in fcontents.

The root �d occurs in the �le space and is a directory �le. All directory �les are bound to

attened directories in the �le space, and directory contains only existing �ds.

(defstructure fs fcontents ftyp rootfid)

(defun filespace (fs)

(let ((fcontents (fs-fcontents fs)) (ftyp (fs-ftyp fs))

(rootfid (fs-rootfid fs)))

CLI Technical Report 121 13

(and (fs-p fs) (basic-file-space fcontents) (fid->ftype ftyp)

(fidp rootfid) (equal (domain ftyp) (domain fcontents))

(bound? rootfid fcontents) (equal (binding rootfid ftyp) 'dir)

(all-dirs-are-dir-files (domain fcontents) fcontents ftyp)

(all-dirs-map-to-legal-fids (domain fcontents) fcontents ftyp))))

The predicate legal-pathname recognizes a legal pathname pn relative to �le iden-

ti�er fid in a �le space. That is, beginning at the given �le identi�er, the pathname

gives a sequence of syllables that occur in successive directories. We have included some

strong statements about the well-formedness of fcontents and ftyp within the de�nition

of legal-pathname.

(defun legal-pathnamep (fid pn fcontents ftyp)

(if (or (not (fidp fid)) (not (bound? fid ftyp))

(not (bound? fid fcontents)))

nil

(if (atom pn) t

(let* ((typ (binding fid ftyp))

(file (binding fid fcontents)) (dir (parsedir file)))

(and (equal typ 'dir) (alternating-syllable-fid-listp file)

(bound? (car pn) dir)

(legal-pathnamep (binding (car pn) dir) (cdr pn)

fcontents ftyp))))))

The function pathname-fid gives the �le identi�er denoted by a legal pathname. In the

rest of text of this report, we frequently refer to a pathname pn without mentioning the

�le identi�er to which it is relative. In the ACL2 forms, however, a starting �le identi�er

startfid is made explicit.

(defun pathname-fid (fid pn fcontents)

(if (atom pn) fid

(pathname-fid

(binding (car pn) (parsedir (binding fid fcontents)))

(cdr pn) fcontents)))

The �rst of the following functions recognizes a pathname that denotes a regular �le.

The second function recognizes a pathname that denotes an empty directory.

(defun regular-file (fcontents ftyp startfid pn)

(declare (xargs :guard (legal-pathnamep startfid pn fcontents ftyp)))

(equal (binding (pathname-fid startfid pn fcontents) ftyp) 'reg))

CLI Technical Report 121 14

(defun empty-directory (fcontents ftyp startfid pn)

(declare (xargs :guard (legal-pathnamep startfid pn fcontents ftyp)))

(and (equal (binding (pathname-fid startfid pn fcontents) ftyp) 'dir)

(equal (binding (pathname-fid startfid pn fcontents) fcontents)

nil)))

The following functions de�ne transitions on the �le space state. link-fs creates a new

link to a �le. pn? is a non-empty pathname, all but the last element of which identi�es a

directory in the �le space. The last element of pn? is an unused syllable in that directory.

link-fs associates that syllable with fid? in that directory, creating a new link to fid?.

(defun link-fs (fs startfid? pn? fid?)

(declare (xargs :guard

(let* ((fcontents (fs-fcontents fs))

(ftyp (fs-ftyp fs))

(fid (pathname-fid startfid? (nonlast pn?)

fcontents)))

(and (filespace fs) (bound? fid? ftyp)

(path-namep pn?) (< 0 (len pn?))

(legal-pathnamep startfid? (nonlast pn?)

fcontents ftyp)

(equal (binding fid ftyp) 'dir)

(not (bound? (car (last pn?))

(parsedir

(binding fid fcontents))))))))

(let* ((fcontents (fs-fcontents fs))

(parentfid (pathname-fid startfid? (nonlast pn?) fcontents))

(newdir (bind (car (last pn?)) fid?

(parsedir (binding parentfid fcontents)))))

(update-fs fs :fcontents

(bind parentfid (unparsedir newdir) fcontents))))

unlink-fs removes the last syllable in pathname pn? from its parent directory.

(defun unlink-fs (fs startfid? pn?)

(declare (xargs :guard

(let ((fcontents (fs-fcontents fs))

(ftyp (fs-ftyp fs)))

(and (filespace fs) (< 0 (len pn?))

(legal-pathnamep startfid? pn? fcontents ftyp)))))

(let* ((fcontents (fs-fcontents fs))

(parentfid (pathname-fid startfid? (nonlast pn?) fcontents))

(newdir (rembind (car (last pn?))

CLI Technical Report 121 15

(parsedir (binding parentfid fcontents)))))

(update-fs fs :fcontents

(bind parentfid (unparsedir newdir) fcontents))))

create-fs applies the create-bfs transition to make a new, empty �le. Then, that �le

is linked to the pathname.

(defun create-fs (fs startfid? pn? ftyp?)

(declare (xargs :guard

(let* ((fcontents (fs-fcontents fs))

(ftyp (fs-ftyp fs))

(fid (pathname-fid startfid? (nonlast pn?)

fcontents)))

(and (filespace fs) (path-namep pn?)

(< 0 (len pn?))

(legal-pathnamep startfid? (nonlast pn?)

fcontents ftyp)

(equal (binding fid ftyp) 'dir)

(not (bound? (car (last pn?))

(parsedir

(binding fid fcontents))))

(ftypep ftyp?)))))

(let* ((fcontents (fs-fcontents fs)) (ftyp (fs-ftyp fs))

(newfid (newfid fcontents))

(fs* (update-fs fs :fcontents (create-bfs fcontents newfid)

:ftyp (add-ftype ftyp newfid ftyp?))))

(link-fs fs* startfid? pn? newfid)))

5.2 Evaluation of the Model

Here is a sequence of �le system operations. fs0 is an initial �le system state, with rootfid

= 0. The root�d is bound to an empty �le in fcontents, and to the value directory in

ftyp. In the �rst step, we create the subdirectory usr of root. Then the subdirectory

tmp is created. Next, the subdirectory smith of usr is created. Finally, smith is unlinked.

Evaluating the function filespace, the legal state predicate, on the result of each of these

steps results in the value t (true).

(assign fs0

(make-fs :fcontents (bind 0 nil nil) :ftyp (bind 0 'dir nil)

:rootfid 0))

CLI Technical Report 121 16

(equal (@ fs0) '(fs ((0)) ((0 . dir)) 0))

(assign fs1 (create-fs (@ fs0) 0 '(usr) 'dir))

(equal (@ fs1) '(fs ((0 usr 1) (1)) ((0 . dir) (1 . dir)) 0))

(assign fs2 (create-fs (@ fs1) 0 '(tmp) 'dir))

(equal (@ fs2)

'(fs ((0 usr 1 tmp 2) (1) (2)) ((0 . dir) (1 . dir) (2 . dir))

0))

(assign fs3 (create-fs (@ fs2) 0 '(usr smith) 'dir))

(equal (@ fs3)

'(fs ((0 usr 1 tmp 2) (1 smith 3) (2) (3))

((0 . dir) (1 . dir) (2 . dir) (3 . dir)) 0))

(assign fs4 (unlink-fs (@ fs3) 1 '(smith)))

(equal (@ fs4)

'(fs ((0 usr 1 tmp 2) (1) (2) (3))

((0 . dir) (1 . dir) (2 . dir) (3 . dir)) 0))

5.3 Theorems about the Model

The following theorems show that the link-fs and unlink-fs transitions preserve the �le

space invariant. We have not proved the theorem for create-fs.

(defthm filespace-link-fs

(let* ((fcontents (fs-fcontents fs)) (ftyp (fs-ftyp fs))

(fid (pathname-fid startfid? (nonlast pn?) fcontents)))

(implies (and (filespace fs) (bound? fid? ftyp)

(path-namep pn?) (< 0 (len pn?))

(legal-pathnamep startfid? (nonlast pn?)

fcontents ftyp)

(equal (binding fid ftyp) 'dir)

(not (bound? (car (last pn?))

(parsedir (binding fid fcontents)))))

(filespace (link-fs fs startfid? pn? fid?)))))

(defthm filespace-unlink-fs

(let ((fcontents (fs-fcontents fs)) (ftyp (fs-ftyp fs)))

(implies (and (filespace fs) (< 0 (len pn?))

(legal-pathnamep startfid? pn? fcontents ftyp))

(filespace (unlink-fs fs startfid? pn?)))))

CLI Technical Report 121 17

6 The File Table

6.1 The Model

The �le table records information about open �les. An oid is an identi�er for an entry in

the �le table. We de�ne oids to be natural numbers.

(defun oidp (x) (naturalp x))

(deflist oid-listp (l) oidp)

The function modep recognizes a legal �le access mode.

(defun modep (x) (member-equal x '(rdonly wronly rdwr append)))

(deflist mode-listp (l) modep)

The �le table consists of three state variables. posn is a mapping from oids to natural

numbers, recording the current o�set into an open �le. mode is a mapping from oid to access

mode, recording the mode in which a �le is open. fid is a mapping from oid to �d, recording

the �le that is open under a given oid. We organize these state components into a record

structure called ft, for �le table.

A legal �le table is an ft structure in which all three of the components are of the right

type. The domains of each of the three components must be equal. That is, when an oid

occurs in one, it occurs in all.

(defstructure ft posn mode fid)

(defun filetable (ft)

(let ((ftposn (ft-posn ft)) (ftmode (ft-mode ft))

(ftfid (ft-fid ft)))

(and (ft-p ft) (oid->natural ftposn) (oid->mode ftmode)

(oid->fid ftfid) (equal (domain ftposn) (domain ftmode))

(equal (domain ftmode) (domain ftfid)))))

new-oid returns an unused oid.

CLI Technical Report 121 18

(defun new-oid (alist) (excess-natural (domain alist)))

The following functions de�ne transitions on the �le table. open-ft creates a new oid

and associates with it a �le position, mode, and �le identi�er. close-ft removes an oid

from the �le table. seek-ft updates an oid's position. incrposn-ft increments an oid's

position.

(defun open-ft (ft posn? mode? fid?)

(declare (xargs :guard

(and (filetable ft) (naturalp posn?) (modep mode?)

(fidp fid?))))

(let* ((ftposn (ft-posn ft)) (ftmode (ft-mode ft))

(ftfid (ft-fid ft)) (newoid (new-oid ftfid)))

(mv newoid

(update-ft ft :posn (bind newoid posn? ftposn) :mode

(bind newoid mode? ftmode) :fid (bind newoid fid? ftfid)))))

(defun close-ft (ft oid?)

(declare (xargs :guard

(and (filetable ft) (bound? oid? (ft-fid ft)))))

(let ((ftposn (ft-posn ft)) (ftmode (ft-mode ft))

(ftfid (ft-fid ft)))

(update-ft ft :posn (rembind oid? ftposn) :mode

(rembind oid? ftmode) :fid (rembind oid? ftfid))))

(defun seek-ft (ft oid? offset?)

(declare (xargs :guard

(and (filetable ft) (bound? oid? (ft-fid ft))

(naturalp offset?))))

(update-ft ft :posn (bind oid? offset? (ft-posn ft))))

(defun incrposn-ft (ft oid? delta?)

(declare (xargs :guard

(and (filetable ft) (bound? oid? (ft-fid ft))

(naturalp delta?))))

(let ((ftposn (ft-posn ft)))

(update-ft ft :posn

(bind oid? (+ (binding oid? ftposn) delta?) ftposn))))

CLI Technical Report 121 19

The following are useful predicates on the �le table. Each checks whether an oid repre-

sents a �le opened in a given mode.

(defun opened-for-read (ft oid?)

(declare (xargs :guard

(and (filetable ft) (oidp oid?)

(bound? oid? (ft-posn ft)))))

(member-equal (binding oid? (ft-mode ft)) '(rdonly rdwr)))

(defun opened-for-write (ft oid?)

(declare (xargs :guard

(and (filetable ft) (oidp oid?)

(bound? oid? (ft-posn ft)))))

(member-equal (binding oid? (ft-mode ft)) '(wronly rdwr)))

(defun opened-for-append (ft oid?)

(declare (xargs :guard

(and (filetable ft) (oidp oid?)

(bound? oid? (ft-posn ft)))))

(equal (binding oid? (ft-mode ft)) 'append))

6.2 Evaluation of the Model

Here are some forms illustrating execution of the �le table primitives. Two �les are opened,

the position associated with the second �le is updated. Then the �rst �le is closed. Note

that these transitions are de�ned independently of the �le space.

(assign ft0 (make-ft :posn nil :mode nil :fid nil))

(equal (@ ft0) '(ft nil nil nil))

(mv-let (oid ft*) (open-ft (@ ft0) 0 'rdonly 12)

(progn (assign newoid oid) (assign ft1 ft*)))

(equal (@ ft1) '(ft ((0 . 0)) ((0 . rdonly)) ((0 . 12))))

(mv-let (oid ft*) (open-ft (@ ft1) 0 'rdwr 13)

(progn (assign newoid oid) (assign ft2 ft*)))

CLI Technical Report 121 20

(equal (@ ft2)

'(ft ((0 . 0) (1 . 0)) ((0 . rdonly) (1 . rdwr))

((0 . 12) (1 . 13))))

(assign ft3 (seek-ft (@ ft2) 1 64))

(equal (@ ft3)

'(ft ((0 . 0) (1 . 64)) ((0 . rdonly) (1 . rdwr))

((0 . 12) (1 . 13))))

(assign ft4 (close-ft (@ ft3) 0))

(equal (@ ft4) '(ft ((1 . 64)) ((1 . rdwr)) ((1 . 13))))

6.3 Theorems about the Model

For two of the transitions, we prove that the �le table invariant is preserved, assuming that

the arguments to the transitions satisfy the appropriate guards.

(defthm filetable-open-ft

(implies (and (filetable ft) (naturalp posn?) (modep mode?)

(fidp fid?))

(mv-let (newoid ft*) (open-ft ft posn? mode? fid?)

(declare (ignore newoid)) (filetable ft*))))

(defthm filetable-close-ft

(implies (and (filetable ft) (bound? oid? (ft-fid ft)))

(filetable (close-ft ft oid?))))

7 Processes

7.1 The Model

A system is populated by processes. A process identi�er is recognized by the predicate pidp.

As with the other types of identi�ers, we have chosen to use natural numbers to represent

process identi�ers. pid-listp recognizes a list of process identi�ers.

(defun pidp (x) (naturalp x))

CLI Technical Report 121 21

(deflist pid-listp (l) pidp)

Processes access open �les through �le descriptors. A �le descriptor is recognized by the

predicate fdp. fd-listp recognizes a list of �le descriptors.

(defun fdp (x) (naturalp x))

(deflist fd-listp (l) fdp)

The key data structure associated with processes is the process table. Each process is

associated with an alist that maps its �le descriptors to oids. We model this association with

an alist that maps each process id to an alist which in turn maps that process's fd's to oid's.

The predicate process-table recognizes a well-formed process table.

(defalist fd->oid (l) (fdp . oidp))

(deflist fd->oid-listp (l) fd->oid)

(defalist pid->[fd->oid] (l) (pidp . fd->oid))

(defun process-table (ptable) (pid->[fd->oid] ptable))

The function fd-to-oid maps a pid and fd to an oid.

(defun fd-to-oid (ptable pid? fd?)

(declare (xargs :guard

(and (process-table ptable) (pidp pid?) (fdp fd?)

(bound? pid? ptable)

(bound? fd? (binding pid? ptable)))))

(binding fd? (binding pid? ptable)))

Here are the transitions de�ned on the process table. add-process-fd adds a new fd to

an existing process in the process table. delete-process-fd removes an fd from a process.

fork-pt copies a process's fds to a newly created process.

CLI Technical Report 121 22

(defun add-process-fd (ptable pid? oid?)

(declare (xargs :guard

(and (process-table ptable) (pidp pid?) (oidp oid?)

(bound? pid? ptable))))

(let ((newfd (excess-natural (domain (binding pid? ptable)))))

(mv newfd

(bind pid? (bind newfd oid? (binding pid? ptable)) ptable))))

(defun delete-process-fd (ptable pid? fd?)

(declare (xargs :guard

(and (process-table ptable) (pidp pid?) (fdp fd?)

(bound? pid? ptable)

(bound? fd? (binding pid? ptable)))))

(bind pid? (rembind fd? (binding pid? ptable)) ptable))

(defun fork-pt (ptable pid?)

(declare (xargs :guard

(and (process-table ptable) (pidp pid?)

(bound? pid? ptable))))

(let ((newpid (excess-natural (domain ptable))))

(mv newpid (bind newpid (binding pid? ptable) ptable))))

7.2 Evaluation of the Model

This section illustrates a few transitions on the process table. The initil process table pt0

contains two processes, 100 and 200. Neither have any fds. In the �rst step, a new fs is

created for process 100, and associated with oid 1. In the next step, process gets another fd,

associated with oid 2. Finally, fd 0 is removed from process 100's �le descriptor table.

(assign pt0 (list (cons 100 nil) (cons 200 nil)))

(equal (@ pt0) '((100) (200)))

(mv-let (newfd newpt) (add-process-fd (@ pt0) 100 1)

(declare (ignore newfd)) (assign pt1 newpt))

(equal (@ pt1) '((100 (0 . 1)) (200)))

CLI Technical Report 121 23

(mv-let (newfd newpt) (add-process-fd (@ pt1) 100 2)

(declare (ignore newfd)) (assign pt2 newpt))

(equal (@ pt2) '((100 (0 . 1) (1 . 2)) (200)))

(assign pt3 (delete-process-fd (@ pt2) 100 0))

(equal (@ pt3) '((100 (1 . 2)) (200)))

8 Garbage Collection

This section implements the garbage collection algorithms speci�ed in [BCT95]. For the sake

of brevity, we have chosen to omit display of some of the supporting functions in this part

of the script.

exists-reference-to-oid asks if some process in the process table contains a �le de-

scriptor that maps to a given oid. The supporting function exists-oid-reference is not

displayed in this document.

(defun exists-reference-to-oid (ptable oid?)

(declare (xargs :guard (and (process-table ptable) (oidp oid?))))

(exists-oid-reference (domain ptable) oid? ptable))

exists-link-reference-to-fid asks whether there is any pathname to a given �d in a

�le space. The function all-pathnames, not displayed here, computes the set of pathnames

rooted at the system root �d.

(defun exists-link-reference-to-fid (fs fid?)

(declare (xargs :guard (and (filespace fs) (fidp fid?))))

(let ((fcontents (fs-fcontents fs)) (ftyp (fs-ftyp fs))

(rootfid (fs-rootfid fs)))

(exists-pathname-to-fid rootfid

(all-pathnames rootfid fcontents ftyp) fid? fcontents ftyp)))

There exists a reference to a �le identi�er fid in the �le table if some oid is mapped to

fid.

(defun exists-file-table-reference-to-fid (ft fid?)

(declare (xargs :guard (and (filetable ft) (fidp fid?))))

(exists-file-table-reference (domain (ft-fid ft)) fid? (ft-fid ft)))

CLI Technical Report 121 24

There exists a reference to a �le identi�er in the system if there is a pathname to it or if

it is open.

(defun exists-reference-to-fid (fs ft fid?)

(declare (xargs :guard

(and (filespace fs) (filetable ft) (fidp fid?))))

(or (exists-link-reference-to-fid fs fid?)

(exists-file-table-reference-to-fid ft fid?)))

File space garbage collection occurs with respect to a given �le identi�er if there are no

references to it.

(defun file-space-gc (fs ft fid?)

(declare (xargs :guard

(and (filespace fs) (filetable ft) (fidp fid?))))

(if (exists-reference-to-fid fs ft fid?) fs

(update-fs fs :fcontents (destroy-bfs (fs-fcontents fs) fid?)

:ftyp (delete-ftype (fs-ftyp fs) fid?))))

An oid is garbage collected in the �le table if there are no references to it.

(defun file-table-gc (ft pt oid?)

(declare (xargs :guard

(and (filetable ft) (process-table pt) (oidp oid?))))

(if (exists-reference-to-oid pt oid?) ft (close-ft ft oid?)))

9 The Basic Access System

9.1 The Model

This level of the model combines the �le space, the �le table, and the process table. The

transitions at this level closely follow the semantics of Unix �le system transitions, except

that permissions and error conditions are not yet in the picture.

The structure of the basic access system (BAS) includes three components: the �le space,

the �le table and the process table. basic-access-system de�nes a legal BAS structure.

The requirements on the argument bas are

1. bas satis�es bas-p, which means that it is a bas defstructure.

CLI Technical Report 121 25

2. The �le space is legal.

3. The �le table is legal.

4. The process table is legal.

5. Every oid in the �le table maps to an �d found in the �lespace.

6. The set of oids found in the process table ((union$ (map-range (range ptable))))

equals the set of oids found in the �le table ((domain ftfid)).

7. Every pathname has a link. This, in e�ect, commits an implementation to perform

garbage collection

(defstructure bas fspace ftable ptable)

(defun basic-access-system (bas)

(let ((fcontents (fs-fcontents (bas-fspace bas)))

(ftyp (fs-ftyp (bas-fspace bas)))

(rootfid (fs-rootfid (bas-fspace bas)))

(ftfid (ft-fid (bas-ftable bas))) (ptable (bas-ptable bas)))

(and (bas-p bas) (filespace (bas-fspace bas))

(filetable (bas-ftable bas)) (process-table (bas-ptable bas))

(subsetp-equal (range ftfid) (domain fcontents))

(set-equal (union$ (map-range (range ptable))) (domain ftfid))

(exists-pathname-to-all-fids rootfid

(all-pathnames rootfid fcontents ftyp) (domain fcontents)

fcontents ftyp))))

Here are the BAS level transitions. The arguments to these transitions more closely

resemble those at the Unix �le system interface. open-bas opens the �le linked to pathname

pn? in mode mode?. It returns two values: a new �le descriptor and an updated bas state.

(defun open-bas (bas pid? startfid? pn? mode?)

(declare (xargs :guard

(let* ((fcontents (fs-fcontents (bas-fspace bas)))

(ptable (bas-ptable bas))

(ftyp (fs-ftyp (bas-fspace bas)))

(fid (pathname-fid startfid? pn? fcontents)))

(and (basic-access-system bas) (pidp pid?)

(bound? pid? ptable) (fidp startfid?)

(path-namep pn?)

(legal-pathnamep startfid? pn? fcontents ftyp)

CLI Technical Report 121 26

(modep mode?)

(implies (equal (binding fid ftyp) 'dir)

(equal mode? 'rdonly))))))

(let* ((fs (bas-fspace bas)) (ft (bas-ftable bas))

(pt (bas-ptable bas)) (fcontents (fs-fcontents fs))

(fid (pathname-fid startfid? pn? fcontents))

(fcontents*

(case mode?

((wronly rdwr) (create-bfs fcontents fid))

(t fcontents)))

(newposn (if (equal mode? 'append)

(len (binding fid fcontents)) 0)))

(mv-let (oid ft*) (open-ft ft newposn mode? fid)

(mv-let (fd pt*) (add-process-fd pt pid? oid)

(mv fd

(update-bas bas :fspace

(update-fs (bas-fspace bas) :fcontents

fcontents*)

:ftable ft* :ptable pt*))))))

close-bas closes the �le that process pid? accesses through �le descriptor fd?.

(defun close-bas (bas pid? fd?)

(declare (xargs :guard

(let ((pt (bas-ptable bas)))

(and (basic-access-system bas) (pidp pid?)

(bound? pid? pt) (fdp fd?)

(bound? fd? (binding pid? pt))))))

(let* ((fs (bas-fspace bas)) (ft (bas-ftable bas))

(pt (bas-ptable bas)) (oid (binding fd? (binding pid? pt)))

(pt* (delete-process-fd pt pid? fd?))

(ft* (file-table-gc ft pt* oid))

(fs* (file-space-gc fs ft* (binding oid (ft-fid ft)))))

(update-bas bas :fspace fs* :ftable ft* :ptable pt*)))

link-bas makes creates a link to a �le. As in link-fs, pn? is a non-empty pathname,

all but the last element of which identi�es a directory in the �le space. The last element of

pn? is an unused syllable in that directory. link-bas associates that syllable with the �le

linked to xpn?, the target pathname.

(defun link-bas (bas startfid? pn? xstartfid? xpn?)

(declare (xargs :guard

(let ((fcontents (fs-fcontents (bas-fspace bas)))

CLI Technical Report 121 27

(ftyp (fs-ftyp (bas-fspace bas))))

(and (basic-access-system bas) (fidp startfid?)

(path-namep pn?) (fidp xstartfid?)

(path-namep xpn?)

(legal-pathnamep xstartfid? xpn? fcontents

ftyp)))))

(let* ((fcontents (fs-fcontents (bas-fspace bas)))

(fid (pathname-fid xstartfid? xpn? fcontents))

(fs* (link-fs (bas-fspace bas) startfid? pn? fid)))

(update-bas bas :fspace fs*)))

unlink-bas unlinks the pathname pn? from its target �le. Any resulting garbage is

collected from the �le space.

(defun unlink-bas (bas startfid? pn?)

(declare (xargs :guard

(let ((fcontents (fs-fcontents (bas-fspace bas)))

(ftyp (fs-ftyp (bas-fspace bas))))

(and (basic-access-system bas) (fidp startfid?)

(path-namep pn?)

(legal-pathnamep startfid? pn? fcontents ftyp)

(or (regular-file fcontents ftyp startfid?

pn?)

(empty-directory fcontents ftyp startfid?

pn?))))))

(let* ((fs (bas-fspace bas)) (ft (bas-ftable bas))

(fcontents (fs-fcontents fs))

(fid (pathname-fid startfid? pn? fcontents))

(fs* (unlink-fs fs startfid? pn?))

(fs** (file-space-gc fs* ft fid)))

(update-bas bas :fspace fs**)))

create-bas creates a new �le in the �lespace. Its type is given by ftyp?.

(defun create-bas (bas startfid? pn? ftyp?)

(declare (xargs :guard

(and (basic-access-system bas) (fidp startfid?)

(path-namep pn?) (ftypep ftyp?))))

(let* ((fs (bas-fspace bas))

(fs* (create-fs fs startfid? pn? ftyp?)))

(update-bas bas :fspace fs*)))

CLI Technical Report 121 28

read-bas performs a read operation in the �le space. The �le is identi�ed by an �le

desscriptor fd? resulting from a previous open operation. Two values are returned: the

sequence of bytes read, and an updated bas state. The state is updated to re
ect the new

position in the open �le.

(defun read-bas (bas pid? fd? length?)

(declare (xargs :guard

(let* ((ft (bas-ftable bas)) (pt (bas-ptable bas))

(oid (fd-to-oid pt pid? fd?)))

(and (basic-access-system bas) (pidp pid?)

(bound? pid? pt) (fdp fd?)

(bound? fd? (binding pid? pt))

(naturalp length?) (opened-for-read ft oid)))))

(let* ((fs (bas-fspace bas)) (ft (bas-ftable bas))

(pt (bas-ptable bas)) (oid (fd-to-oid pt pid? fd?))

(fid (binding oid (ft-fid ft)))

(posn (binding oid (ft-posn ft)))

(data (read-bfs (fs-fcontents fs) fid posn length?))

(ft* (incrposn-ft ft oid (length data))))

(mv data (update-bas bas :ftable ft*))))

write-bas writes the sequence of bytes data? at the current position of the �le speci�ed

by �le descriptor fd?.

(defun write-bas (bas pid? fd? data?)

(declare (xargs :guard

(let* ((ft (bas-ftable bas)) (pt (bas-ptable bas))

(oid (fd-to-oid pt pid? fd?)))

(and (basic-access-system bas) (pidp pid?)

(bound? pid? pt) (fdp fd?)

(bound? fd? (binding pid? pt)) (filep data?)

(or (opened-for-write ft oid)

(opened-for-append ft oid))))))

(let* ((fs (bas-fspace bas)) (ft (bas-ftable bas))

(pt (bas-ptable bas)) (oid (fd-to-oid pt pid? fd?))

(fid (binding oid (ft-fid ft)))

(posn (binding oid (ft-posn ft)))

(fcontents* (write-bfs (fs-fcontents fs) fid posn data?))

(ft* (incrposn-ft ft oid (length data?))))

(update-bas bas :fspace (update-fs fs :fcontents fcontents*)

:ftable ft*)))

append-bas writes the sequence of bytes data? at end of the �le speci�ed by �le de-

scriptor fd?.

CLI Technical Report 121 29

(defun append-bas (bas pid? fd? data?)

(declare (xargs :guard

(let* ((ft (bas-ftable bas)) (pt (bas-ptable bas))

(oid (fd-to-oid pt pid? fd?)))

(and (basic-access-system bas) (pidp pid?)

(bound? pid? pt) (fdp fd?)

(bound? fd? (binding pid? pt)) (filep data?)

(or (opened-for-write ft oid)

(opened-for-append ft oid))))))

(let* ((fs (bas-fspace bas)) (ft (bas-ftable bas))

(pt (bas-ptable bas)) (oid (fd-to-oid pt pid? fd?))

(ft* (seek-ft ft oid

(filelength (fs-fcontents fs)

(binding oid (ft-fid ft))))))

(write-bas (update-bas bas :ftable ft*) pid? fd? data?)))

fork-bas creates a new process, and copies the process table of the parent process into

the new process. A new process identi�er and an updates bas state are returned.

(defun fork-bas (bas pid?)

(declare (xargs :guard

(and (basic-access-system bas) (pidp pid?)

(bound? pid? (bas-ptable bas)))))

(mv-let (pid pt*) (fork-pt (bas-ptable bas) pid?)

(mv pid (update-bas bas :ptable pt*))))

9.2 Evaluation of the Model

In this section we display a fairly extensive sequence of calls to the BAS system interface.

This sequence illustrates �le creation, open and close operations, and reading and writing.

Closing and unlinking �les demonstrates garbage collection.

The initial BAS state is constructed from the initial �le space, initial �le table, and initial

process table introduced in previous sections. The �le space contains only the root �d. The

�le table is empty. The process table contains two process identi�ers: 100 and 200, neither

of which have any open �les.

(assign bas0 (bas (@ fs0) (@ ft0) (@ pt0)))

(equal (@ bas0)

'(bas (fs ((0)) ((0 . dir)) 0) (ft nil nil nil) ((100) (200))))

CLI Technical Report 121 30

In the next sequence of commands, three subdirectories of / are created: usr, tmp, and

dev. Then, the subdirectories /usr/jones and /usr/smith are created. Finally, the regular

�le /usr/jones/mail is created.

(assign bas1 (create-bas (@ bas0) 0 '(usr) 'dir))

(equal (@ bas1)

'(bas (fs ((0 usr 1) (1)) ((0 . dir) (1 . dir)) 0)

(ft nil nil nil) ((100) (200))))

(assign bas2 (create-bas (@ bas1) 0 '(tmp) 'dir))

(equal (@ bas2)

'(bas (fs ((0 usr 1 tmp 2) (1) (2))

((0 . dir) (1 . dir) (2 . dir)) 0)

(ft nil nil nil) ((100) (200))))

(assign bas3 (create-bas (@ bas2) 0 '(dev) 'dir))

(equal (@ bas3)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1) (2) (3))

((0 . dir) (1 . dir) (2 . dir) (3 . dir)) 0)

(ft nil nil nil) ((100) (200))))

(assign bas4 (create-bas (@ bas3) 0 '(usr jones) 'dir))

(equal (@ bas4)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4) (2) (3) (4))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)) 0)

(ft nil nil nil) ((100) (200))))

(assign bas5 (create-bas (@ bas4) 1 '(smith) 'dir))

(equal (@ bas5)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3) (4)

(5))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir))

0)

(ft nil nil nil) ((100) (200))))

CLI Technical Report 121 31

(assign bas6 (create-bas (@ bas5) 0 '(usr jones mail) 'reg))

(equal (@ bas6)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3)

(4 mail 6) (5) (6))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir) (6 . reg))

0)

(ft nil nil nil) ((100) (200))))

In the following sequence, /usr/jones/mail is opened in append mode. Two messages

are appended, then the �le is closed. Note that the �le table is cleaned up after the �le is

closed. This is done via garbage collection.

(mv-let (fd bas) (open-bas (@ bas6) 100 0 '(usr jones mail) 'append)

(progn (assign fd0 fd) (assign bas7 bas)))

(equal (@ bas7)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3)

(4 mail 6) (5) (6))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir) (6 . reg))

0)

(ft ((0 . 0)) ((0 . append)) ((0 . 6)))

((100 (0 . 0)) (200))))

(assign bas8 (append-bas (@ bas7) 100 (@ fd0) '(a b c d e f g h)))

(equal (@ bas8)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3)

(4 mail 6) (5) (6 a b c d e f g h))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir) (6 . reg))

0)

(ft ((0 . 8)) ((0 . append)) ((0 . 6)))

((100 (0 . 0)) (200))))

(assign bas9 (append-bas (@ bas8) 100 (@ fd0) '(i j k l m n o p)))

CLI Technical Report 121 32

(equal (@ bas9)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3)

(4 mail 6) (5) (6 a b c d e f g h i j k l m n o p))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir) (6 . reg))

0)

(ft ((0 . 16)) ((0 . append)) ((0 . 6)))

((100 (0 . 0)) (200))))

(assign bas10 (close-bas (@ bas9) 100 (@ fd0)))

(equal (@ bas10)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3)

(4 mail 6) (5) (6 a b c d e f g h i j k l m n o p))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir) (6 . reg))

0)

(ft nil nil nil) ((100) (200))))

Next, /usr/jones/mail is opened for reading. Two read operations are performed. Note

how the �le position is updated after each read. In the second read operation, the position

is updated only by the amount read, not by the amount requested. Finally, the �le is closed

and the �le table is gc'd.

(mv-let (fd bas) (open-bas (@ bas10) 200 0 '(usr jones mail) 'rdonly)

(progn (assign fd1 fd) (assign bas11 bas)))

(equal (@ bas11)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3)

(4 mail 6) (5) (6 a b c d e f g h i j k l m n o p))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir) (6 . reg))

0)

(ft ((0 . 0)) ((0 . rdonly)) ((0 . 6)))

((100) (200 (0 . 0)))))

(mv-let (data bas) (read-bas (@ bas11) 200 (@ fd1) 5)

(progn (assign data0 data) (assign bas12 bas)))

(equal (@ data0) '(a b c d e))

CLI Technical Report 121 33

(equal (@ bas12)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3)

(4 mail 6) (5) (6 a b c d e f g h i j k l m n o p))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir) (6 . reg))

0)

(ft ((0 . 5)) ((0 . rdonly)) ((0 . 6)))

((100) (200 (0 . 0)))))

(mv-let (data bas) (read-bas (@ bas12) 200 (@ fd1) 20)

(progn (assign data1 data) (assign bas13 bas)))

(equal (@ data1) '(f g h i j k l m n o p))

(equal (@ bas13)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3)

(4 mail 6) (5) (6 a b c d e f g h i j k l m n o p))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir) (6 . reg))

0)

(ft ((0 . 16)) ((0 . rdonly)) ((0 . 6)))

((100) (200 (0 . 0)))))

(assign bas14 (close-bas (@ bas13) 200 (@ fd1)))

(equal (@ bas14)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3)

(4 mail 6) (5) (6 a b c d e f g h i j k l m n o p))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir) (6 . reg))

0)

(ft nil nil nil) ((100) (200))))

/usr/jones/mail is not open. So unlinking the pathname to this �le also removes it

from the �le space.

(assign bas15 (unlink-bas (@ bas14) 0 '(usr jones mail)))

(equal (@ bas15)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3) (4)

(5))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir))

0)

(ft nil nil nil) ((100) (200))))

CLI Technical Report 121 34

10 Discretionary Access Control

In this section we model Unix �le system discretionary access control. A permission is one

of fr, w, xg. User names and group names are symbols.

(defun permp (x) (declare (xargs :guard t)) (member-equal x '(r w x)))

(deflist perm-listp (l) permp)

(defun userp (x) (symbolp x))

(deflist user-listp (l) userp)

(defun groupp (x) (symbolp x))

(deflist group-listp (l) groupp)

The structure dac-fa contains the attributes that can be associated with a �le: owner,

group, owner permissions group permissions, and other permissions. fid->dac-fa models

the association of a �le identi�er with the �le's attributes.

(defstructure dac-fa owner group owner-perms group-perms other-perms)

(defalist fid->dac-fa (l) (fidp . dac-fa-p))

The structure dac-pa contains the attributes that can be associated with a process:

owner, and a set of groups. The data type pid->dac-pa models the association of a process

identi�er with the process's attributes.

(defstructure dac-pa owner groups)

(defalist pid->dac-pa (l) (pidp . dac-pa-p))

The structure dac represents the current dac attributes assigned to �les and processes.

CLI Technical Report 121 35

(defstructure dac fdac pdac)

The current permissions that a process has to a �le is computed by current-perms.

This function follows the standard algorithm of checking the owner perms �rst, then group

permissions, and �nally other permissions.

(defun current-perms (dac pid? fid?)

(declare (xargs :guard (and (dac-p dac) (pidp pid?) (fidp fid?))))

(if (and (bound? pid? (dac-pdac dac)) (bound? fid? (dac-fdac dac)))

(let ((pa (binding pid? (dac-pdac dac)))

(fa (binding fid? (dac-fdac dac))))

(if (equal (dac-pa-owner pa) (dac-fa-owner fa))

(dac-fa-owner-perms fa)

(if (member-equal (dac-fa-group fa) (dac-pa-groups pa))

(dac-fa-group-perms fa) (dac-fa-other-perms fa))))

nil))

dacop? de�nes the operations for which the function necessary-perms computes re-

quired permissions. necessary-perms also takes a mode argument, which makes sense only

in the case where dacop = 'open.

(defun dacop? (x) (member-equal x '(open link unlink create search)))

(defun necessary-perms (dacop mode)

(declare (xargs :guard (and (dacop? dacop) (modep mode))))

(case dacop

(open (case mode (rdonly '(r)) (rdwr '(r w)) (t '(w))))

(link '(w x))

(unlink '(w x))

(search '(x))

(create '(w x))

(t nil)))

A pathname pn to a �le is visible to a process if the process has permissions suÆcient to

search every ancestor directory along the path. dac-visible-pn decides of a pathname is

visible to a process, given the current DAC permissions. This function is used as a guard in

operations de�ned at the Unix level.

(defun dac-visible-pn (bas dac pid? startfid? pn?)

(declare (xargs :guard

(and (basic-access-system bas) (dac-p dac)

CLI Technical Report 121 36

(pidp pid?) (fidp startfid?) (path-namep pn?)

(legal-pathnamep startfid? pn?

(fs-fcontents (bas-fspace bas))

(fs-ftyp (bas-fspace bas))))))

(cond

((atom pn?) t)

(t (and (subsetp-equal (necessary-perms 'search 'rdonly)

(current-perms dac pid? startfid?))

(dac-visible-pn bas dac pid?

(pathname-fid startfid? (list (car pn?))

(fs-fcontents (bas-fspace bas)))

(cdr pn?))))))

11 The Unix File System Interface

11.1 The Model

pid->fid is the recognizer for a mapping from process ids to �le ids. This is the data type

used to associate a process with its current working directory.

(defalist pid->fid (l) (pidp . fidp))

At the level of the Unix �le system, state includes the basic access system bas, the dac

state dac, a mapping pcwd that maps each process to its current working directory, and the

current process cpid. ufsp recognizes a legal state at the Unix �le system interface. The

requirements on the argument ufs are

1. ufs satis�es ufs-p, which means that it is a ufs defstructure.

2. The basic access system is legal.

3. The dac structures are legal.

4. The process current working directory map satis�es pid->fid.

5. The current process is a pid.

6. Every �le recorded in the DAC tables is in the �le space.

7. Every process recorded in the DAC tables is in the process table.

8. Every process has a current working directory.

CLI Technical Report 121 37

9. The current process is in the process table.

10. Every �d in the range of pcwd is a directory �le in the �le space. (The function

directory-fids collects the subset of �ds that are directories.)

(defstructure ufs bas dac pcwd cpid)

(defun unix-file-system (ufs)

(let* ((bas (ufs-bas ufs)) (dac (ufs-dac ufs)) (pcwd (ufs-pcwd ufs))

(cpid (ufs-cpid ufs)) (fs (bas-fspace bas)))

(and (ufs-p ufs) (basic-access-system bas) (dac-p dac)

(pid->fid pcwd) (pidp cpid)

(equal (domain (dac-fdac dac)) (domain (fs-fcontents fs)))

(equal (domain (dac-pdac dac)) (domain (bas-ptable bas)))

(equal (domain pcwd) (domain (bas-ptable bas)))

(member-equal cpid (domain (bas-ptable bas)))

(subsetp-equal (range pcwd) (directory-fids (fs-ftyp fs))))))

We introduce relative and absolute pathnames. A labelled pathname is a 2-tuple consist-

ing of a pathname type and a pathname. The function absolute-pathname computes an

absolute pathname from a labelled pathname, using a process's current working directory as

the starting point of the pathname when the label is relative.

(defun path-name-typep (x) (member-equal x '(relative absolute)))

(defstructure lpn type pathname)

(defun absolute-pathname (bas pcwd pid lpn)

(declare (xargs :guard

(and (basic-access-system bas) (pidp pid) (lpn-p lpn)

(pid->fid pcwd))))

(let ((fs (bas-fspace bas)))

(if (eq (lpn-type lpn) 'relative)

(mv (binding pid pcwd) (lpn-pathname lpn))

(mv (fs-rootfid fs) (lpn-pathname lpn)))))

CLI Technical Report 121 38

Following are executable models of some of the Unix �le system operations. These func-

tions model successful outcomes only. That is, preconditions on arguments are satis�ed and

the DAC requirements are met. These requirements are stated explicitly in the guard to

each operation. A layer above, that includes return codes for various error conditions, could

be constructed with no conceptual diÆculty.

The predicate create-permitted-dac de�nes the conditions under which DAC permits

a �le creation operation. create-file-attrs-dac models the update to DAC permissions

when a �le is created. createok-ufs de�nes a successful �le creation on UFS state.

(defun create-permitted-dac (bas dac pid? startfid? pn?)

(declare (xargs :guard (and (basic-access-system bas) (dac-p dac))))

(let* ((fs (bas-fspace bas))

(fid (pathname-fid startfid? (nonlast pn?) (fs-fcontents fs))))

(and (consp pn?)

(dac-visible-pn bas dac pid? startfid? (nonlast pn?))

(subsetp-equal (necessary-perms 'create 'rdwr)

(current-perms dac pid? fid)))))

(defun create-file-attrs-dac

(bas dac pid? startfid? pn? owner-perms? group-perms?

other-perms?)

(declare (xargs :guard

(let ((fs (bas-fspace bas)))

(and (basic-access-system bas) (dac-p dac)

(pidp pid?) (fidp startfid?) (path-namep pn?)

(perm-listp owner-perms?)

(perm-listp group-perms?)

(perm-listp other-perms?) (consp pn?)

(legal-pathnamep startfid? pn?

(fs-fcontents fs) (fs-ftyp fs))))))

(let* ((fs (bas-fspace bas))

(fid (pathname-fid startfid? pn? (fs-fcontents fs)))

(pfid (pathname-fid startfid? (nonlast pn?) (fs-fcontents fs))))

(update-dac dac :fdac

(bind fid

(make-dac-fa :owner

(dac-pa-owner (binding pid? (dac-pdac dac))) :group

(dac-fa-group (binding pfid (dac-fdac dac)))

:owner-perms owner-perms? :group-perms group-perms?

:other-perms other-perms?)

(dac-fdac dac)))))

CLI Technical Report 121 39

(defun create-ok-ufs

(ufs lpn? ftyp? owner-perms? group-perms? other-perms?)

(declare (xargs :guard

(let ((bas (ufs-bas ufs)) (dac (ufs-dac ufs))

(pcwd (ufs-pcwd ufs)) (cpid (ufs-cpid ufs)))

(and (unix-file-system ufs)

(mv-let (startfid pn)

(absolute-pathname bas pcwd cpid lpn?)

(create-permitted-dac bas dac cpid

startfid pn))))))

(let ((bas (ufs-bas ufs)) (dac (ufs-dac ufs)) (pcwd (ufs-pcwd ufs))

(cpid (ufs-cpid ufs)))

(mv-let (startfid pn) (absolute-pathname bas pcwd cpid lpn?)

(let ((bas* (create-bas bas startfid pn ftyp?)))

(update-ufs ufs :bas bas* :dac

(create-file-attrs-dac bas* dac cpid startfid pn

owner-perms? group-perms? other-perms?))))))

The predicate open-permitted-dac de�nes the conditions under which DAC permits a

�le open operation. open-existing-file-ok-ufs de�nes a successful open operation on an

existing �le.

(defun open-permitted-dac (bas dac pid? startfid? pn? mode?)

(declare (xargs :guard

(and (basic-access-system bas) (dac-p dac)

(pidp pid?) (fidp startfid?) (path-namep pn?)

(modep mode?))))

(let* ((fs (bas-fspace bas))

(fid (pathname-fid startfid? pn? (fs-fcontents fs))))

(and (dac-visible-pn bas dac pid? startfid? pn?)

(subsetp-equal (necessary-perms 'open mode?)

(current-perms dac pid? fid)))))

(defun open-existing-file-ok-ufs (ufs lpn? mode?)

(declare (xargs :guard

(let ((bas (ufs-bas ufs)) (dac (ufs-dac ufs))

(pcwd (ufs-pcwd ufs)) (cpid (ufs-cpid ufs)))

(and (unix-file-system ufs)

(mv-let (startfid pn)

(absolute-pathname bas pcwd cpid lpn?)

(open-permitted-dac bas dac cpid

startfid pn mode?))))))

CLI Technical Report 121 40

(let ((bas (ufs-bas ufs)) (pcwd (ufs-pcwd ufs))

(cpid (ufs-cpid ufs)))

(mv-let (startfid pn) (absolute-pathname bas pcwd cpid lpn?)

(mv-let (fd bas*) (open-bas bas cpid startfid pn mode?)

(mv fd (update-ufs ufs :bas bas*))))))

The predicate link-permitted-dac de�nes the conditions under which DAC permits a

�le link operation. link-ok-ufs de�nes a successful link operation.

(defun link-permitted-dac (bas dac pid? startfid? pn? xstartfid? xpn?)

(declare (xargs :guard

(and (basic-access-system bas) (dac-p dac)

(pidp pid?) (fidp startfid?) (path-namep pn?)

(fidp xstartfid?) (path-namep xpn?))))

(let* ((fs (bas-fspace bas))

(fid (pathname-fid startfid? (nonlast pn?) (fs-fcontents fs))))

(and (consp pn?)

(dac-visible-pn bas dac pid? startfid? (nonlast pn?))

(dac-visible-pn bas dac pid? xstartfid? xpn?)

(subsetp-equal (necessary-perms 'link 'rdwr)

(current-perms dac pid? fid)))))

(defun link-ok-ufs (ufs lpn? xlpn?)

(declare (xargs :guard

(let ((bas (ufs-bas ufs)) (dac (ufs-dac ufs))

(pcwd (ufs-pcwd ufs)) (cpid (ufs-cpid ufs)))

(and (unix-file-system ufs)

(mv-let (startfid pn)

(absolute-pathname bas pcwd cpid lpn?)

(mv-let (xstartfid xpn)

(absolute-pathname bas pcwd

cpid xlpn?)

(link-permitted-dac bas dac

cpid startfid pn xstartfid

xpn)))))))

(let ((bas (ufs-bas ufs)) (pcwd (ufs-pcwd ufs))

(cpid (ufs-cpid ufs)))

(mv-let (startfid pn) (absolute-pathname bas pcwd cpid lpn?)

(mv-let (xstartfid xpn)

(absolute-pathname bas pcwd cpid xlpn?)

(update-ufs ufs :bas

(link-bas bas startfid pn xstartfid

xpn))))))

CLI Technical Report 121 41

The predicate unlink-permitted-dac de�nes the conditions under which DAC permits

a �le unlink operation. unlink-ok-ufs de�nes a successful unlink operation.

(defun unlink-permitted-dac (bas dac pid? startfid? pn?)

(declare (xargs :guard

(and (basic-access-system bas) (dac-p dac)

(pidp pid?) (fidp startfid?) (path-namep pn?))))

(let* ((fs (bas-fspace bas))

(fid (pathname-fid startfid? (nonlast pn?) (fs-fcontents fs))))

(and (consp pn?)

(dac-visible-pn bas dac pid? startfid? (nonlast pn?))

(subsetp-equal (necessary-perms 'unlink 'rdwr)

(current-perms dac pid? fid)))))

(defun unlink-ok-ufs (ufs lpn?)

(declare (xargs :guard

(let ((bas (ufs-bas ufs)) (dac (ufs-dac ufs))

(pcwd (ufs-pcwd ufs)) (cpid (ufs-cpid ufs)))

(and (unix-file-system ufs)

(mv-let (startfid pn)

(absolute-pathname bas pcwd cpid lpn?)

(unlink-permitted-dac bas dac cpid

startfid pn))))))

(let ((bas (ufs-bas ufs)) (pcwd (ufs-pcwd ufs))

(cpid (ufs-cpid ufs)))

(mv-let (startfid pn) (absolute-pathname bas pcwd cpid lpn?)

(update-ufs ufs :bas (unlink-bas bas startfid pn)))))

No explicit DAC permissions are required for read, write and close operations. DAC

checks are made at the time a �le is opened.

(defun read-ok-ufs (ufs fd? length?)

(declare (xargs :guard

(and (unix-file-system ufs) (fdp fd?)

(naturalp length?))))

(let ((bas (ufs-bas ufs)) (cpid (ufs-cpid ufs)))

(mv-let (data bas*) (read-bas bas cpid fd? length?)

(mv data (update-ufs ufs :bas bas*)))))

CLI Technical Report 121 42

(defun write-ok-ufs (ufs fd? data?)

(declare (xargs :guard

(let* ((bas (ufs-bas ufs)) (cpid (ufs-cpid ufs))

(ft (bas-ftable bas))

(oid (fd-to-oid (bas-ptable bas) cpid fd?)))

(and (unix-file-system ufs) (fdp fd?) (filep data?)

(or (opened-for-write ft oid)

(opened-for-append ft oid))))))

(let* ((bas (ufs-bas ufs)) (cpid (ufs-cpid ufs))

(ft (bas-ftable bas))

(oid (fd-to-oid (bas-ptable bas) cpid fd?)))

(if (opened-for-write ft oid)

(update-ufs ufs :bas (write-bas bas cpid fd? data?))

(update-ufs ufs :bas (append-bas bas cpid fd? data?)))))

(defun close-ok-ufs (ufs fd?)

(declare (xargs :guard (and (unix-file-system ufs) (fdp fd?))))

(let ((bas (ufs-bas ufs)) (cpid (ufs-cpid ufs)))

(update-ufs ufs :bas (close-bas bas cpid fd?))))

11.2 Evaluation of the Model

Here are some calls that illustrate the operation of the Unix File System interface. We let

bas10, constructed in Section 9.2 be our initial BAS state. Recall that this state includes

the directories /usr/jones and /usr/smith, and the regular �le /usr/jones/mail. No �les

are open. There are two processes, 100 and 200.

(equal (@ bas10)

'(bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2) (3)

(4 mail 6) (5) (6 a b c d e f g h i j k l m n o p))

((0 . dir) (1 . dir) (2 . dir) (3 . dir) (4 . dir)

(5 . dir) (6 . reg))

0)

(ft nil nil nil) ((100) (200))))

dac0 is a DAC state constructed for these �les and processes. Process 100 is assigned

to Jones, and 200 to Smith. Jones is the owner of /usr/jones, and Smith is the owner of

/usr/smith. r and x permissions to these directories are granted to other users. No one

other than Jones has access to /usr/jones/mail.

CLI Technical Report 121 43

(equal (@ dac0)

'(dac ((0 dac-fa root nil (r w x) nil (r x))

(1 dac-fa root nil (r w x) nil (r w x))

(2 dac-fa root nil (r w x) nil (r w x))

(3 dac-fa root nil (r w x) nil (r w x))

(4 dac-fa jones nil (r w x) nil (r x))

(5 dac-fa smith nil (r w x) nil (r x))

(6 dac-fa jones nil (r w x) nil nil))

((100 dac-pa jones nil) (200 dac-pa smith nil))))

The initial working directory table assigns /usr/jones to process 100, and /usr/smith

to process 200.

(assign pcwd0 '((100 . 4) (200 . 5)))

The initial state ufs0 for our example includes bas0, dac0, pcwd0, and 100 is the current

process. This state satis�es the legal state predicate for the Unix �le system interface.

(assign ufs0

(make-ufs :bas (@ bas10) :dac (@ dac0) :pcwd (@ pcwd0) :cpid

100))

(equal (unix-file-system (@ ufs0)) t)

All pathnames in this state are visible to both Jones and Smith. Here are some evaluations

of the visible pathname function.

(equal (dac-visible-pn (@ bas10) (@ dac0) 100 0 '(usr jones mail)) t)

(equal (dac-visible-pn (@ bas10) (@ dac0) 200 0 '(usr jones mail)) t)

We create a subdirectory /usr/jones/secret, and then /usr/jones/secret/plans.

The latter pathname is not visible to Smith, which is illustrated below.

(assign ufs1

(create-ok-ufs (@ ufs0)

(make-lpn :type 'relative :pathname '(secret)) 'dir

'(r w x) nil nil))

CLI Technical Report 121 44

(equal (@ ufs1)

'(ufs (bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2)

(3) (4 mail 6 secret 7) (5)

(6 a b c d e f g h i j k l m n o p) (7))

((0 . dir) (1 . dir) (2 . dir) (3 . dir)

(4 . dir) (5 . dir) (6 . reg) (7 . dir))

0)

(ft nil nil nil) ((100) (200)))

(dac ((0 dac-fa root nil (r w x) nil (r x))

(1 dac-fa root nil (r w x) nil (r w x))

(2 dac-fa root nil (r w x) nil (r w x))

(3 dac-fa root nil (r w x) nil (r w x))

(4 dac-fa jones nil (r w x) nil (r x))

(5 dac-fa smith nil (r w x) nil (r x))

(6 dac-fa jones nil (r w x) nil nil)

(7 dac-fa jones nil (r w x) nil nil))

((100 dac-pa jones nil) (200 dac-pa smith nil)))

((100 . 4) (200 . 5)) 100))

(assign ufs2

(create-ok-ufs (@ ufs1)

(make-lpn :type 'relative :pathname '(secret plans)) 'reg

'(r w x) nil nil))

(equal (@ ufs2)

'(ufs (bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2)

(3) (4 mail 6 secret 7) (5)

(6 a b c d e f g h i j k l m n o p) (7 plans 8)

(8))

((0 . dir) (1 . dir) (2 . dir) (3 . dir)

(4 . dir) (5 . dir) (6 . reg) (7 . dir)

(8 . reg))

0)

(ft nil nil nil) ((100) (200)))

(dac ((0 dac-fa root nil (r w x) nil (r x))

(1 dac-fa root nil (r w x) nil (r w x))

(2 dac-fa root nil (r w x) nil (r w x))

(3 dac-fa root nil (r w x) nil (r w x))

(4 dac-fa jones nil (r w x) nil (r x))

(5 dac-fa smith nil (r w x) nil (r x))

(6 dac-fa jones nil (r w x) nil nil)

(7 dac-fa jones nil (r w x) nil nil)

(8 dac-fa jones nil (r w x) nil nil))

((100 dac-pa jones nil) (200 dac-pa smith nil)))

CLI Technical Report 121 45

((100 . 4) (200 . 5)) 100))

Now we see that /usr/jones/secret/plans is not a pathname visible to Smith.

(equal (not (dac-visible-pn (ufs-bas (@ ufs2)) (ufs-dac (@ ufs2)) 200 0

'(usr jones secret plans)))

t)

We illustrate one more call at the ufs level, unlinking /usr/jones/mail. This causes �le

6 to be garbage collected from the �le space, since there are no references to it. However, we

have not implemented garbage collection for the DAC state, and therefore the �le attributes

for �le 6 remain.

(assign ufs3

(unlink-ok-ufs (@ ufs2)

(make-lpn :type 'relative :pathname '(mail))))

(equal (@ ufs3)

'(ufs (bas (fs ((0 usr 1 tmp 2 dev 3) (1 jones 4 smith 5) (2)

(3) (4 secret 7) (5) (7 plans 8) (8))

((0 . dir) (1 . dir) (2 . dir) (3 . dir)

(4 . dir) (5 . dir) (7 . dir) (8 . reg))

0)

(ft nil nil nil) ((100) (200)))

(dac ((0 dac-fa root nil (r w x) nil (r x))

(1 dac-fa root nil (r w x) nil (r w x))

(2 dac-fa root nil (r w x) nil (r w x))

(3 dac-fa root nil (r w x) nil (r w x))

(4 dac-fa jones nil (r w x) nil (r x))

(5 dac-fa smith nil (r w x) nil (r x))

(6 dac-fa jones nil (r w x) nil nil)

(7 dac-fa jones nil (r w x) nil nil)

(8 dac-fa jones nil (r w x) nil nil))

((100 dac-pa jones nil) (200 dac-pa smith nil)))

((100 . 4) (200 . 5)) 100))

CLI Technical Report 121 46

References

[BCT95] William R. Bevier, Richard M. Cohen, and Je� Turner.

A speci�cation for the synergy �le system.

Technical report, Computational Logic, Inc., September 1995.

[KM94] Matt Kaufmann and J Strother Moore.

Design goals of acl2.

Technical Report 101, Computational Logic, Inc., August 1994.

[Spi89] J.M. Spivey.

The Z Notation: A Reference Manual.

Prentice Hall, 1989.

[Ste84] Guy L. Steele Jr.

Common LISP: The Language.

Digital Press, 1984.

[Ste90] Guy L. Steele Jr.

Common LISP: The Language, Second Edition.

Digital Press, 1990.

Index

absolute-pathname, 37

add-ftype, 11

add-process-fd, 21

all-dirs-are-dir-�les, 12

all-dirs-map-to-legal-�ds, 12

alternating-syllable-�d-listp, 10

append-bas, 29

bas, 25

basic-access-system, 25

basic-�le-space, 6

bytep, 5

close-bas, 26

close-ft, 18

close-ok-ufs, 42

create-bas, 27

create-bfs, 7

create-�le-attrs-dac, 38

create-fs, 15

create-ok-ufs, 39

create-permitted-dac, 38

current-perms, 35

dac, 34

dac-fa, 34

dac-pa, 34

dac-visible-pn, 36

dacop, 35

delete-ftype, 11

delete-process-fd, 22

destroy-bfs, 7

directoryp, 10

empty-directory, 14

exists-�le-table-reference-to-�d, 23

exists-link-reference-to-�d, 23

exists-reference-to-�d, 24

exists-reference-to-oid, 23

fd->oid, 21

fd->oid-listp, 21

fd-listp, 21

fd-to-oid, 21

fdp, 21

�d->dac-fa, 34

�d->�le, 6

�d->ftype, 11

�d-listp, 6

�dp, 6

�le-listp, 6

�le-space-gc, 24

�le-table-gc, 24

�lelength, 7

�lep, 5

�lespace, 13

�letable, 17

fork-bas, 29

fork-pt, 22

fs, 12

ft, 17

ftypep, 11

group-listp, 34

groupp, 34

incrposn-ft, 18

legal-pathnamep, 13

link-bas, 27

link-fs, 14

link-ok-ufs, 40

link-permitted-dac, 40

literalp, 5

lpn, 37

mode-listp, 17

modep, 17

necessary-perms, 35

47

CLI Technical Report 121 48

new-oid, 18

new�d, 7

oid-listp, 17

oidp, 17

open-bas, 26

open-existing-�le-ok-ufs, 39

open-ft, 18

open-permitted-dac, 39

opened-for-append, 19

opened-for-read, 19

opened-for-write, 19

pad, 6

pad�le, 6

parsedir, 10

path-name-typep, 37

path-namep, 10

pathname-�d, 13

pathname-limit, 5

perm-listp, 34

permp, 34

pid->[fd->oid], 21

pid->dac-pa, 34

pid->�d, 36

pid-listp, 20

pidp, 20

process-table, 21

read-bas, 28

read-bfs, 8

read-ok-ufs, 41

regular-�le, 13

seek-ft, 18

syllable-listp, 10

syllablep, 10

symbol->integer, 3

ufs, 37

unix-�le-system, 37

unlink-bas, 27

unlink-fs, 15

unlink-ok-ufs, 41

unlink-permitted-dac, 41

unparsedir, 10

user-listp, 34

userp, 34

write-bas, 28

write-bfs, 8

write-ok-ufs, 42

