

Message Transport

Model 2

of the

CAETI Minimal Architecture

Donald I. Good

Updated by M. K. Smith

Computational Logic, Inc.

Working Draft

(All Model Components)

June 22, 1996

�
� TOC \o "1-8" \t "Heading 9,1" �

1. Message Transport Model 2	� GOTOBUTTON _Toc358181988 � PAGEREF _Toc358181988 �3��

2. Derivation	� GOTOBUTTON _Toc358181989 � PAGEREF _Toc358181989 �6��

3. Mathematical Model	� GOTOBUTTON _Toc358181990 � PAGEREF _Toc358181990 �12��

4. Issues Raised	� GOTOBUTTON _Toc358181991 � PAGEREF _Toc358181991 �15��

5. Related Activities	� GOTOBUTTON _Toc358181992 � PAGEREF _Toc358181992 �16��

6. ACL2 Model	� GOTOBUTTON _Toc358181993 � PAGEREF _Toc358181993 �17��

7. Simulator	� GOTOBUTTON _Toc358181994 � PAGEREF _Toc358181994 �18��

Attachment A. Bellmanís Introduction of CMA	� GOTOBUTTON _Toc358181995 � PAGEREF _Toc358181995 �21��

Attachment B. Harbisonís Elaboration of CMA	� GOTOBUTTON _Toc358181996 � PAGEREF _Toc358181996 �22��

Attachment C. TCP Concepts and Terminology	� GOTOBUTTON _Toc358181997 � PAGEREF _Toc358181997 �23��

Attachment D. Bibliography	� GOTOBUTTON _Toc358181998 � PAGEREF _Toc358181998 �28��

Attachment E. CAETI Architecture Working Groups	� GOTOBUTTON _Toc358181999 � PAGEREF _Toc358181999 �32��

�

Message Transport Model 2

Model 2 describes a TCP-like exchange of KQML-like messages. This model is derived from three primary sources of information.

[Bellman, 96a] (Attachment A) is Kirstie Bellmanís March 20 slide that introduced the CAETI minimal architecture.

[Harbison, 96a] (Attachment B) is Karan Harbisonís April 14 email elaboration of that slide.

[CAT, 96a] is the CAETI Architecture Teamís May 8 draft document that describes the ìCAETI minimal architecture (CMA)î in greater detail.

This model primarily attempts to follow the CAETI Architecture Teamís draft [CAT, 96a]. However, where the three sources of information are inconsistent, consistency is maintained with [Bellman, 96a] and [Harbison, 96b]. (Thus, Model 2 more closely resembles Model 1 [Good, 96b] which was derived from just those two documents.) Model 2 also contains some recommended deviations from [CAT, 96a]. These deviations make the transport aspects of CMA more closely resemble TCP transmission than what is described in [CAT, 96a]. The rationale for this deviation is i) to make the message transmission part of the CMA more strongly resemble a well established data transmission protocol (TCP), and ii) to make a stronger separation of the concerns of message transmission and message content.

This section gives an English description of Model 2. It is intended to be simply a precise description of the CMA. The rationale for deriving this model from the source documents is given in the Derivation section, and the mathematical statement of the model is given in Mathematics section. The Issues Raised section summarized the various issues raised by this derivation and mathematical formulation.

CMA Purpose. The purpose of the CMA is to enable CAETI applications to exchange messages.

Set of Processes. The CAETI system is of a set of interacting processes. CAETI applications are processes.

Process Interaction. CAETI processes are required to interact only by exchanging CMA messages.

TCP-Like Message Transport. CAETI processes are required to exchange CMA messages only over connections that can be supported by TCP/IP. This does not rule out other means of interprocess communication.

Interprocess Connections. A connection is a logical communication path that is identified by a pair of CAETI addresses.

CAETI Addresses. There is a CAETI address space that identifies the end points of connections. Every element of the address space is unique.

Message Elements. Every CMA message is composed of a sequence of ASCII characters. Messages are of variable length and potentially large.

KQML Message Syntax. Every CMA message has the following syntax:

<performative> ::= (<word> {<whitespace> :<word> <whitespace> <expression>}*)

<expression> ::= <word> | <quotation> | <string> | (<word> {whitespace <expression>}*)

<word> ::= <character><character>*

<character> ::= <alphabetic> | <numeric> | <special>

<special> ::= < | > | = | + | - | * | / | & | ^ | ~ | - | @ | $ | % | : | . | ! | ?

<quotation> ::= ë<expression> | `<comma-expression>

<comma-expression> ::= <word> | <quotation> | <string> | ,<comma-expression>

				| (<word> {<whitespace> <comma-expression>}*)

<string> ::= ì<stringchar>*î | #<digit><digit>*î<ascii>*

<stringchar> ::= \<ascii> | <ascii>-\-î

Note that the second form of <string> has an additional restriction: The number named by the <digit>s is how many <ascii> characters must follow. e.g. #5îabcde

Messages Types. CAETI processes are required only to receive and respond to the following types of messages: tell, ask, do, subscribe, sorry. The type of the message is identified by the first <word> in the <performative>.

Message Parameters. Message parameters are identified by the :<word> parts of a <performative>. Every CMA message must have both a sender and a receiver parameter, and it may contain some or all of the following parameters:

Parameter�
Description�
Default�
Examples�
�
sender�
where the message is from�
none�
pa.caeti.org:2010�
�
receiver�
where the message is to�
none�
sa@dodea.edu http://foo.net/agent�
�
language�
how the content is encoded�
text�
text, MIME, KIF, TOE�
�
ontology�
the name of the ontology used in the content�
something appropriate for the language�
Student Academic Record�
�
content�
the encoded representation of data to be passed�
none�
ìmath score = 98%î�
�
reply-with�
whether a reply is expected, and if so, a label for the reply�
nil�
ìbobís math scoreî�
�
in-reply-to�
the expected label�
none�
ìbobís math scoreî�
�

Messages may contain any additional parameters, the meaning of which should be agreed upon by both sender and receiver. Parameters may appear in any order. Refer to the KQML specification for more detailed definitions of the syntax and semantics of these parameters.

Message Addressing. There is a mapping from the sender and receiver parameters of messages into CAETI addresses (which are the end points of connections).

Message Delivery. The sender parameter of every CMA message maps into the CAETI address from which the message was sent. If a CMA message is delivered, it is delivered to the CAETI address that is mapped from the receiver parameter in the message. This does not require that every CMA message be delivered nor that CMA messages be delivered in the order in which they were sent.

Derivation

In the remainder of this section, the items following the bullets are an English description of the model. The intervening comments are the rational for the model.

CMA Purpose. The purpose of the CMA is to enable CAETI applications to exchange messages.

ìThis architecture covers a minimalist methodology to give CAETI Applications the ability to receive messages and respond to them.... To preserve flexibility, interpretation of the meaning of the messages, processes invoked on receipt of an message, and contents of returned messages are up to individual collaborating CAETI developers.î -- [CAT, 96a, p2]

The preceding is the rationale for making Model 2 describe a TCP-like exchange of KQML-like messages. First, this makes the message transmission part of the CMA more strongly resemble TCP. TCP [Postel, 81a] is the well-established data transmission protocol upon which the Internet is based. Second, this more strongly separates the concern of message transmission from the concern of message content. Message content is based on KQML [Finin, 93a] which is a draft specification of an emerging language for communication among knowledge based agents.

Set of Processes. The CAETI system is of a set of interacting processes. CAETI applications are processes.

ìëGrow ears and a nervous systemí (~ becomes a callable process)î -- [Bellman, 95]

[CAT, 96a] introduces the term ìmoduleî as follows: ìThe term ëmoduleí is used herein to refer interchangeably to whole systems as well as their subcomponents.î [CAT, 96a, p3], and the ìMessage Assumptionsî section of [CAT, 96a, pp.3-4] implies that ìmodulesî are the parties that exchange messages.

Model 2 uses the term ìprocessesî to refer to the parties that exchange messages rather than ìmodules.î This terminology is used for several reasons. First, in so far as possible, Model 2 uses transmission concepts and terminology that are consistent with TCP as defined in RFC 793 [Postel, 81a]. (See Attachment C for the relevant excerpts.) The RFC 793 glossary defines both ìprocessî and ìmoduleî as follows:

module: ìAn implementation, usually in software, of a protocol or other procedure.î

process: ìA program in execution. A source or destination of data from the point of view of the TCP or other host-to-host protocol.î

Second, ìprocessî and ìmoduleî appear to be interchangeable in [CAT, 96a]. Third, ìprocessî is the term introduced by Bellman.

Process Interaction. CAETI processes are required to interact only by exchanging CMA messages.

ìThere is no explicit concept of integration beyond the message exchange.î -- [Harbison, 95b].}

TCP-Like Message Transport. CAETI processes are required to exchange messages only over connections that can be supported by TCP/IP. This does not rule out other means of interprocess communication.

ìCommunication transport layer - TCP/IP, ...î -- [Bellman, 95].} [Bellman, 95] also identifies ìSMTPî and ìHTTP (desirable)î as communication transport requirements. All of these can be supported by TCP/IP.

ìThis is based upon a developerís choice of a TCP/IP, SMTP/POP3, or HTTP transport layer to enable transmission of some basic (abstract) interprocess messages. ì -- [CAT, 96a, p2]

ìIn order to be sent by TCP/IP sockets, SMTP, or HTTP, the message (including all parameters) must beî -- [CAT, 96a, p5]

ìAll three CAETI Transport layers use TCP/IP at some level.î -- [CAT, 96a, Footnote p5]

What seems to be envisioned in all three source documents is a transmission service for CAETI messages that can be implemented either by HTTP, by SMTP/POP3, or by TCP/IP.

Interprocess Connections. A connection is a logical communication path that is identified by a pair of CAETI addresses.

ìThe interprocess messaging is based on socket, SMTP or HTTP connections between clients and servers; one-to-many, or peer to peer.î -- [CAT, 96a, p.11]

The Model 2 view of interprocess communication deviates somewhat from [CAT, 96a]. Instead of phrasing communication in terms of ìmodulesî connected by ìlinksî, CMA message transmission service in Model 2 is identical to TCP service with the following exceptions:

CMA transmits streams of whole messages rather than streams of octets.

CMA messages may arrive in a different order than they were transmitted.

CMA messages may be lost in transmission.

Exception 1 is the fundamental abstraction of CMA message transmission. CMA transmits whole messages in the same kind of way as TCP transmits octets. Thus, CMA can be implemented directly by a TCP/IP service with the addition of a service that converts between CMA messages and octets. Exceptions 2 and 3 are included to enable CMA transmission also to be done via SMTP/POP3 or HTTP.

This TCP-based message transmission service is described in terms of ìprocessesî exchanging messages over ìconnections.î The service in [CAT, 96a] is described in terms of ìmodulesî exchanging messages over ìlinks.î An argument is given below that the two services are comparable except that ìconnectionsî are bi-directional, whereas ìlinksî are unidirectional. However, bi-directional communication is required among CAETI processes because they are required to respond to incoming messages.

ìCan receive and respond to a set of 6-10 messages (responses may be negative)î -- [Bellman, 96a]

So, instead of using a pair of uni-directional links for bi-directional communication, Model 2 just uses bi-directional connections. This introduces no additional requirement.

To see that the two services are comparable, consider each of the message assumptions stated in [CAT, 96a, pp3-4].

ìChoice of transport protocol is up to the application developer and is independent of the messages.î The TCP-based service may be implemented by a TCP service (together with a message to octet conversion service), but it may be implemented in other ways.

ìModules are connected by unidirectional communication links that carry discrete messages.î The TCP-based connections are bi-directional instead of unidirectional. (ìA connection can be used to carry data in both directions, that is, it is ëfull duplexí.î -- [Postel 81a, p10])

ìThese links may have a non-zero message transport delay associated with them.î (In general the TCPs decide when to block and forward data at their own convenience.î -- [Postel, 81a, p4])

ìWhen a module sends a message it may direct to which outgoing link the message goes.î The TCP SEND command that a user process uses to transmit data over a connection contains a ìlocal connection nameî parameter which is a local name for the connection. [Postel, 81a, p46].

ìWhen a module receives a message, it knows from which incoming link the message arrived.î The TCP RECEIVE command also contains a ìlocal connection nameî parameter. [Postel, 81a, p48]

ìMessages are sent and arrive asynchronously.î (It is also expected that the TCP can

 asynchronously communicate with application programs.î -- [Postel, 81a, p3])

ìMessages generally arrive in the order they were sent, but may not.î This deviates from TCP, and it the reason for Exception 2 in the TCP-based service.

ìMessage delivery is generally reliable, but programs should be designed to be robust enough to work stand-alone if the transport layer is unavailable. It is understood that this may cause degraded performance or force applications to run with older data.î This deviates from TCP, and it is the reason for Exception 3 in the TCP-based service.

The CMA message assumptions in [CAT, 96a] appear to be derived from the KQML transport assumptions which also are stated in terms of ìlinks.î

ìAgents are connected by unidirectional communication links that carry discrete messages;

these links may have a non-zero message transport delay associated with them;

when an agent receives a message, it knows from which incoming link the message arrived;

when an agent sends a message it may direct to which outgoing link the message goes;

messages to a single destination arrive in the order they were sent;

message delivery is reliable.î

These are an abstraction which can be implemented a variety of ways. ì... the links could be TCP/IP connections over the Internet,.... The links could be email paths... The links could be UNIX IPC connections.... Or, the links could be high-speed switches in a multiprocessor....î [Finin, 93a, p6]

If the KQML links were bi-directional instead of unidirectional, the TCP-based service without Exceptions 2 and 3 would be comparable to the KQML assumptions.

CAETI Addresses. There is a CAETI address space that identifies the end points of connections. Every element of the address space is unique.

The CAETI address space is not addressed in any of the source documents. Because the CAETI address space is not resolved in the source documents, Model 2 also leaves it unresolved. Model 2 simply assumes that a CAETI address space exists and that every address in the space is unique.

RFC 793 very carefully defines the end points of TCP connections to be ìsocketsî, and a socket is ìAn address which specifically includes a port identifier, that is, the concatenation of an Internet Address with a TCP port.î [Postel, 81a, p84] Thus, sockets are the address space for TCP connections, and each socket is unique.

None of the three source documents, [Bellman, 96a], [Harbison, 96a] or [CAT, 96a], raise the issue of the CAETI address space. However, identifying this address space is critical because it identifies the end points of CMA message exchange. If CMA message exchange were required only over TCP connections, TCP sockets would be the natural choice for the CAETI address space. However, because exchange via SMTP/POP3 and HTTP also is to be allowed, an address space of TCP sockets is not adequate. For example, email for many different users many be transmitted over the same TCP socket.

Message Elements. Every CMA message is composed of a sequence of ASCII characters. Messages are of variable length and potentially large.

ìIn order to be sent by TCP/IP sockets, SMTP, or HTTP, the message (including all parameters) must be represented as a sequence of ASCII characters. Messages can be of variable length, and are potentially large. The messages may be larger than local TCP/IP� buffers.î -- [CAT, 96a, p5]

KQML Message Syntax. Every CMA message has the following syntax:

<performative> ::= (<word> {<whitespace> :<word> <whitespace> <expression>}*)

<expression> ::= <word> | <quotation> | <string> | (<word> {whitespace <expression>}*)

<word> ::= <character><character>*

<character> ::= <alphabetic> | <numeric> | <special>

<special> ::= < | > | = | + | - | * | / | & | ^ | ~ | - | @ | $ | % | : | . | ! | ?

<quotation> ::= ë<expression> | `<comma-expression>

<comma-expression> ::= <word> | <quotation> | <string> | ,<comma-expression>

				| (<word> {<whitespace> <comma-expression>}*)

<string> ::= ì<stringchar>*î | #<digit><digit>*î<ascii>*

<stringchar> ::= \<ascii> | <ascii>-\-î

Note that the second form of <string> has an additional restriction: The number named by the <digit>s is how many <ascii> characters must follow. e.g. #5îabcde

This syntax is taken directly from [CAT, 96a, p5], and it is taken from [Finin, 93a, p8].

Messages Types. CAETI processes are required only to receive and respond to the following types of messages: tell, ask, do, subscribe, sorry. The type of the message is identified by the first <word> in the <performative>.

ìCan receive and respond to 6-10 messages (responses may be negative)î -- [Bellman, 96a].

ìA Minimum Set of Message Performatives {tell, ask, do, subscribe, sorry}

Components need to tell things to one another, and to ask for information. Tell can be used to reply to ask queries. Modules can request other modules to do actions, to achieve goals, or invoke a remote method or command. Modules may subscribe to changes in other modules' states, saying, in effect, "ask for notification of when your state changes in such-and-such a way". Finally, modules need to be able to report errors in processing or understanding - "sorry I didn't understand your message"; "sorry I could not complete your request due to an error [of type x]". Besides defining the performatives, the CMA specifies a KQML compatible message syntax in terms of message parameters.î -- [CAT, 96a, p4]

That the first <word> of the <performative> identifies the type of CMA is implicit in the examples of [CAT, 96a].

Message Parameters. Message parameters are identified by the :<word> parts of a <performative>. Every CMA message must have both a sender and a receiver parameter, and it ìmay contain some or all of the following parameters:

Parameter�
Description�
Default�
Examples�
�
sender�
where the message is from�
none�
pa.caeti.org:2010�
�
receiver�
where the message is to�
none�
sa@dodea.edu http://foo.net/agent�
�
language�
how the content is encoded�
text�
text, MIME, KIF, TOE�
�
ontology�
the name of the ontology used in the content�
something appropriate for the language�
Student Academic Record�
�
content�
the encoded representation of data to be passed�
none�
ìmath score = 98%î�
�
reply-with�
whether a reply is expected, and if so, a label for the reply�
nil�
ìbobís math scoreî�
�
in-reply-to�
the expected label�
none�
ìbobís math scoreî�
�

Messages may contain any additional parameters, the meaning of which should be agreed upon by both sender and receiver. Parameters may appear in any order. Refer to the KQML specification for more detailed definitions of the syntax and semantics of these parameters.î -- [CAT, 96a, p4]

For instance, [CAT, 96a, p9] contains the following example of an ask message:

(ask 	:sender pa@parent.net

	:receiver server.school.edu:4030

	:language text

	:content ìGive me Amyís recordî)

[CAT, 96a] does not explicitly specify that a CMA message must have both a sender and a receiver parameter, but this seems to be what is intended.

Message Addressing. There is a mapping from the sender and receiver parameters of messages into CAETI addresses (which are the end points of connections).

This issue is not raised in the source documents. The name service that is discussed in the extension of [CAT, 96a] is a different issue. However, defining this mapping is essential for getting CMA messages delivered to the parties for which they are intended.

Message Delivery. The sender parameter of every CMA message maps into the CAETI address from which the message was sent. If a CMA message is delivered, it is delivered to the CAETI address that is mapped from the receiver parameter in the message. This does not require that every CMA message be delivered nor that CMA messages be delivered in the order in which they were sent.

Correctly identifying the sender of a CMA is not mentioned in [CAT, 96a]. However, this is necessary for messages to be exchanged only between the intended parties. For example, correct identification of the sender is necessary for security. Otherwise, for example, it would be a simple matter for process A to masquerade as process B and obtain information for which B had access but A did not.

Mathematical Model

This model views the CAETI system as sequences of CAETI messages being exchanged by processes that are attached to bi-directional connections. A connection is a logical communication path that is identified by a pair of CAETI addresses. (A process may be attached to more than one connection.) There is a mapping from the sender and receiver parameters of messages into CAETI addresses.

Message Traffic.

The message traffic at a CAETI address is modeled as two independent sequences of CMA messages. One is the sequence of all inbound messages that have arrived at the address, and the other is the sequence of all outbound messages that have been sent from the address.

The traffic for a particular address a can be modeled as an ordered pair (x,y) where x is the inbound message sequence, and y is the outbound sequence. Every CAETI address is unique. At any given moment, only some of these addresses will be in use by CAETI processes. Therefore, the CAETI system is modeled as a mapping from CAETI addresses into the pair of inbound and outbound CAETI message sequences that have occurred at that address as follows:

CAETI-system = { (a, (x, y)) }

where

a is an address in use by a CAETI process,

x is the sequence of messages inbound through address a,

y is the sequence of messages outbound through address a,

Because every CAETI address is unique, CAETI-system is a mapping from CAETI addresses into pairs of CMA message sequences.

Address Mapping.

There is a function address-map(a) that maps CAETI addresses into the sender and receiver parameters (which are ASCII strings). There is also an inverse function un-map(s) that maps these strings back into CAETI addresses. These functions have the property

un-map(address-map(a)) = a

The CAETI Message Type.

Field accesses into the record structure give the value of each message parameter.

type a-CMA-msg =

record (kind : a-CMA-type;

	sender : a-caeti-address;

	receiver : a-caeti-address;

	content : string;

	language : string := ìtextî;

	ontology : string;

	reply-with : string;

	in-reply-to : string);

Message Types.

The allowed types of CMA messages are recognized by the relation is-CMA-msg(m) as follows:

	

type a-CMA-msg = enum [tell, ask, do subscribe, sorry];

Outbound Messages.

This model assumes that every message sent from a CAETI address must be a CMA message. No other kinds of messages may be sent from a CAETI address. It also assumes that the sender parameter of every CMA message correctly identifies the CAETI address from which it was sent. In particular, every message m in the sequence of outbound messages y from address a has the following properties:

a-CMA-msg(m) & address-map(sender(m)) = a

Inbound Messages.

This model assumes only that if a message arrives at a CAETI address, then it arrives at the address identified by its receiver parameter, it was sent from the address identified by its sender parameter, and it was not modified in transit. In particular, every message m in the sequence of inbound messages x at address a has the following properties:

address-map(receiver(m)) = a & occurs-in(m, outbound(CAETI-system,a))

where

outbound(s,a) is the function that gives the outbound sequence y that is associated with address a in system s, and

occurs-in(m,y) is true iff message m occurs somewhere in the message sequence y.

Because every inbound message must be some outbound message, every outbound message also will be a CMA message.

Issues Raised

TCP-Like Message Transmission. It is recommended the CMA be modified to be more strongly based on TCP for its message transmission. This would include adopting TCP terminology and deviating from TCP-like service only where necessary.

CAETI Address Space? An address space that precisely identifies the end points of CMA message exchange needs to be defined. Otherwise, CMA message exchange is not well-defined.

Address Mapping? In addition to the address space, a mapping between CAETI addresses and the sender and receiver parameters of CMA messages needs to be defined.

Connection Management? The CMA does not provide any means of managing connections -- e.g., opening a connection, closing a connection or getting the status of a connection. Following TCP connection management is recommended.

Connection Performance? It seems intended that CAETI connections be implemented either by HTTP, SMTP/POP3, or directly by TCP/IP. Neither HTTP nor SMTP/POP3 are transmission protocols as is TCP, and there service characteristics differ greatly. For example, TCP reliably delivers octets in sequence. This is not a property of HTTP or SMTP/POP3 service. The performance characteristics of these three protocols also differ greatly. For example, although in principle, the learning space demo that was presented in Arlington could have been done using SMTP, performance would have made it totally impractical. To get adequate performance, a more direct use of TCP was required; and because the CMA does not provide the means for TCP connection management, it appears that the CMA cannot support the kind of learning space that was demonstrated in Arlington.

Homogenous Traffic? Does the traffic over a CAETI address consist only of CMA messages, or can other kinds of messages also flow over the address? This model assumes homogenous CMA traffic. Heterogeneous traffic may be a more realistic assumption.

Message Recognition? If the message traffic is heterogeneous, how are CMA message types to be distinguished from other kinds of messages?

Message Integrity? What are the well-formedness requirements CMA messages beyond the syntax that is given in [CAT, 96a]? For example, what are the mandatory parameters? At a minimum, the sender and receiver parameters appear to be mandatory.

Traffic Integrity? What are the requirements, if any, of the sequence in which CMA message can be exchanged?

Message Packaging. Some operations will be required to disassemble CMA message sequences into ASCII character sequences and to reassemble ASCII sequences into message sequences. Functionally, these operations will need to satisfy the relation

reassemble(disassemble(y)=y

for message sequences y.

Related Activities

COSA. COSA [Baumgart, 96a] is a much more detailed architecture than the minimal architecture [CAT, 96a]. If is-CMA-msg(m) is replaced by is-COSA-msg(m), a model of the transport of COSA messages is obtained. This simply requires that all messages transported be COSA messages instead of just minimal CMA messages. The requirement for COSA to comply with the minimal architecture can be expressed as

is-CMA-msg(m) -> is-COSA-msg(m).

In short, every minimal CMA message must be admitted by COSA, but many other kinds of messages also may be COSA messages.

Learning Space Demo. The integrated learning space demo that was given in Arlington on March 22, 1996 illustrated the architecture described in [Balzer, 95a] at the October, 1995 kick-off meeting. This architecture consists of several agents communicating through a MUD. It appears that the CMA could not support this learning space demo because for adequate performance that demo would require direct use of TCP, and the CMA does not provide a way of opening and closing the connections needed to support the learning space.

Architecture Hierarchy. [Luckham, 95] proposes a four level hierarchy of architectures. Progressing from most abstract to least abstract, the four levels are user interface, concept of operations, abstract implementation, and resource. The CMA appears to fit in at approximately at the resource level, and the mathematical model proposed here appears to be an interface connection architecture as [Luckham, 95] recommends for CAETI.

Architectural Monitor. In [Good, 95] the idea of a architectural monitor was proposed. It is conceptually easy to envision such a monitor which continually observes the traffic at a CAETI address and checks it for compliance with various architectural requirements.

ACL2 Model

What follows is the ACL2 specification of CAETI systems developed for Model 1 as modified for Model 2. It is modified by replacing ìTCP socketî terminology by ìCAETI addressî terminology. It still needs to be updated to include the other differences between Model 1 and Model 2.

The infix syntax should be clear, given the following operators:

(l \ a) is assoc, e.g. it finds the first pair in l whose first element equals a.

a :> l is cons, adding a to the front of list l.

[a, b, c] contructs a list of three elements.

in-package "ACL2";

type a-caeti-address;

type a-CMA-type = enum[tell, ask, do, subscribe, sorry];

type a-CMA-msg =

 record (kind : a-CMA-type,

 sender : a-caeti-address,

 receiver : a-caeti-address,

 content : string,

 language : string := "text",

 ontology : string,

 reply-with : string,

 in-reply-to : string);

type a-CMA-history = a-CMA-msg * ; /* A list of a-CMA-msg */

type an-in-out = record (inl : a-CMA-history, outl : a-CMA-history);

/* a-caeti-system is defined to be an association list, mapping addresses to in-out histories. */

type a-caeti-system = [a-caeti-address . an-in-out] *;

theorem caeti-system-true-list

 { a-caeti-system(x) -> true-listp(x) };

/* Find the pair in list l whose first element equals a. */

function is-unique-caeti-address (s : a-caeti-address, l : a-caeti-system) : boolean

 { !(l \ s) };

function all-caeti-addresss-unique (l)

{ if !consp(l)

 then t

 elif a-caeti-system(l) & is-unique-caeti-address(l.car.car, l.cdr)

 then all-caeti-addresss-unique(l.cdr)

 else nil };

verify guards all-caeti-addresss-unique;

function is-caeti-system (l : a-caeti-system) : boolean

 { all-caeti-addresss-unique(l) };

Simulator

What follows is the ACL2 simulator of CAETI systems from Model 1, modified by replacing ìTCP socketî terminology by ìCAETI addressî terminology. It still needs to be updated to include the other differences between Model 1 and Model 2.

in-package "ACL2";

/* We need the concrete version of a-caeti-address for simulation. */

type a-caeti-address = integer;

type a-CMA-type = enum[tell, ask, do, subscribe, sorry];

type a-CMA-msg =

 record (kind : a-CMA-type,

 sender : a-caeti-address,

 receiver : a-caeti-address,

 content : string,

 language : string := "text",

 ontology : string,

 reply-with : string,

 in-reply-to : string);

type a-CMA-history = a-CMA-msg * ; /* A list of a-CMA-msg */

type an-in-out = record (inl : a-CMA-history, outl : a-CMA-history);

type a-caeti-system = [a-caeti-address . an-in-out] *;

theorem caeti-system-true-list

 { a-caeti-system(x) -> true-listp(x) };

function is-unique-caeti-address (s : a-caeti-address, l : a-caeti-system) : boolean

 { !(l \ s) };

function all-caeti-addresss-unique (l)

{ if !consp(l)

 then t

 elif a-caeti-system(l) & is-unique-caeti-address(l.car.car, l.cdr)

 then all-caeti-addresss-unique(l.cdr)

 else nil };

verify guards all-caeti-addresss-unique;

function is-caeti-system (l : a-caeti-system) : boolean

 { all-caeti-addresss-unique(l) };

/* Update incoming and outgoing message histories.

 Given a msg and a CAETI-system we update the history for the addresses

 of msg by adding msg to its senderís outgoing-msg field. If there is no

 outgoing history corresponding to the sender of msg,

 we make an empty one and add msg to its outgoing-msg field. */

function update-outgoing-msg (msg : a-CMA-msg ,

			 s : a-caeti-system): a-caeti-system

/* The nil in make-an-in-out is the empty input history. */

{ if endp(s) then [sender(msg) :> make-an-in-out(nil , [msg])]

 elif msg.sender = car(s.car)

 then cons(s.car.car :> update-an-in-out(s.car.cdr, :outl cons(msg, outl(s.car.cdr))),

	 s.cdr)

 else s.car :> update-outgoing-msg(msg, s.cdr) };

function update-incoming-msg (msg : a-CMA-msg ,

			 s : a-caeti-system): a-caeti-system

{ if endp(s) then [receiver(msg) :> make-an-in-out([msg] , nil)]

 elif receiver(msg) = s.car.car

 then cons(s.car.car :> update-an-in-out(s.car.cdr, :inl cons(msg, inl(s.car.cdr))),

	 s.cdr)

 else cons(s.car, update-incoming-msg(msg, s.cdr)) };

/* Given a msg from sender to receiver we update the outgoing-msg

 field of the sender and the incoming-msg field of the receiver.

 This is the fundamental "transaction" on a CAETI-system, s. */

function update-caeti-system (msg : a-CMA-msg, s : a-caeti-system): a-caeti-system

{ update-incoming-msg (msg, update-outgoing-msg (msg, s)) };

function caeti-sim (l : a-CMA-history, s : a-caeti-system): a-caeti-system

{ if endp(l) then s

 else caeti-sim(l.cdr, update-caeti-system(l.car, s)) };

/* Here is a sample call. */

caeti-sim(

'[[MAKE-A-CMA-MSG, tell, 	1, 	2, 	"msg a from 1 to 2", 	"text", "text", "", ""],

 [MAKE-A-CMA-MSG, ask, 	2, 	1, 	"query from 2 to 1", 	"text", "text", "", ""],

 [MAKE-A-CMA-MSG, tell, 	1, 	2, 	"response from 1 to 2", 	"text", "text", "", ""],

 [MAKE-A-CMA-MSG, ask, 	3, 	1, 	"query from 3 to 1", 	"text", "text", "", ""],

 [MAKE-A-CMA-MSG, sorry, 3, 	1, 	"failure report 3 to 1", 	"text", "text", "", ""]],

 nil);

/* Here is the result with some comments: */

((1 ; List of messages received, in reverse chronological order:

 ((TYPE1 . "Reply from 3 to 1 about their first message.")

 (TYPE1 . "Reply from 2 to 1 about first message."))

 ; List of messages sent, in reverse chronological order:

 ((TYPE1 . "First message from 1 to 3.")

 (TYPE1 . "First message from 1 to 2.")))

 (2 ; List of messages received, in reverse chronological order:

 ((TYPE1 . "First message from 1 to 2."))

 ; List of messages sent, in reverse chronological order:

 ((TYPE1 . "Spontaneous message from 2 to 3.")

 (TYPE1 . "Reply from 2 to 1 about first message.")))

 (3 ; List of messages received, in reverse chronological order:

 ((TYPE1 . "Spontaneous message from 2 to 3.")

 (TYPE1 . "First message from 1 to 3."))

 ; List of messages sent, in reverse chronological order:

 ((TYPE1 . "Reply from 3 to 1 about their first message."))))

|#

Bellmanís Introduction of CMA

� EMBED ���

Harbisonís Elaboration of CMA

Date: Sun, 14 Apr 1996

To: caeti@nosc.mil

From: harbison@Onramp.NET (Karan Harbison)

Subject: Architecture Efforts

.....

The CAETI MINIMAL ARCHITECTURE COMPLIANCE UPDATE

Kirstie took some time to expand my understanding of the CAETI Minimal

Compliance Architecture.

* The MCA definition will remain constant over the life of the program. In

other words, it is not evolving.

* The MCA was defined in Kirstie's Community Meeting II slides.

 - It is at the comm protocol level. The options are listed on her slides.

 - It does not deal with data sharing beyond the concept of a message.

 - A component must be able to "receive" a message but does not have to

"understand" the message. A component must "receive" the 6-10 messages.

That means that the pathways must be in place to accept a message, but it

is not necessary to "understand" the message.

 - A component must "reply" that is has received a message. (There is some

debate on how this fits with the "ears and nervous system" analogy). In

some sense if there is a reply, then some action must be taken to reply.

This implies that the nervous system has responded with an action - which

requires an actuator in addition to the ear and the nervous system.

 - There is no explicit concept of integration beyond the message interchange.

* The ITDs will require additional compliance items. For example, a

database for sharing data may be the first compliance step.

TCP Concepts and Terminology

The following are excerpts from RFC 793 [Postel, 81a], which is the document the defines TCP.

p1. The TCP provides for reliable inter-process communication between pairs of processes in host computers attached to distinct but interconnected computer communication networks.

p3. The TCP interfaces on one side to user or application processes and on the other side to a lower level protocol such as Internet Protocol.

p3. As noted above, the primary purpose of the TCP is to provide reliable, securable logical circuit or connection service between pairs of processes.

p4. Basic Data Transfer:

 The TCP is able to transfer a continuous stream of octets in each

 direction between its users by packaging some number of octets into

 segments for transmission through the internet system. In general,

 the TCPs decide when to block and forward data at their own

 convenience.

 Sometimes users need to be sure that all the data they have

 submitted to the TCP has been transmitted. For this purpose a push

 function is defined. To assure that data submitted to a TCP is

 actually transmitted the sending user indicates that it should be

 pushed through to the receiving user. A push causes the TCPs to

 promptly forward and deliver data up to that point to the receiver.

 The exact push point might not be visible to the receiving user and

 the push function does not supply a record boundary marker.

 Reliability:

 The TCP must recover from data that is damaged, lost, duplicated, or

 delivered out of order by the internet communication system. This

 is achieved by assigning a sequence number to each octet

 transmitted, and requiring a positive acknowledgment (ACK) from the

 receiving TCP. If the ACK is not received within a timeout

 interval, the data is retransmitted. At the receiver, the sequence

 numbers are used to correctly order segments that may be received

 out of order and to eliminate duplicates. Damage is handled by

 adding a checksum to each segment transmitted, checking it at the

 receiver, and discarding damaged segments.

 As long as the TCPs continue to function properly and the internet

 system does not become completely partitioned, no transmission

 errors will affect the correct delivery of data. TCP recovers from

 internet communication system errors.

 Flow Control:

 TCP provides a means for the receiver to govern the amount of data

 sent by the sender. This is achieved by returning a "window" with

 every ACK indicating a range of acceptable sequence numbers beyond

 the last segment successfully received. The window indicates an

 allowed number of octets that the sender may transmit before

 receiving further permission.

p5 Multiplexing:

 To allow for many processes within a single Host to use TCP

 communication facilities simultaneously, the TCP provides a set of

 addresses or ports within each host. Concatenated with the network

 and host addresses from the internet communication layer, this forms

 a socket. A pair of sockets uniquely identifies each connection.

 That is, a socket may be simultaneously used in multiple

 connections.

 The binding of ports to processes is handled independently by each

 Host. However, it proves useful to attach frequently used processes

 (e.g., a "logger" or timesharing service) to fixed sockets which are

 made known to the public. These services can then be accessed

 through the known addresses. Establishing and learning the port

 addresses of other processes may involve more dynamic mechanisms.

 Connections:

 The reliability and flow control mechanisms described above require

 that TCPs initialize and maintain certain status information for

 each data stream. The combination of this information, including

 sockets, sequence numbers, and window sizes, is called a connection.

 Each connection is uniquely specified by a pair of sockets

 identifying its two sides.

 When two processes wish to communicate, their TCP's must first

 establish a connection (initialize the status information on each

 side). When their communication is complete, the connection is

 terminated or closed to free the resources for other uses.

 Since connections must be established between unreliable hosts and

 over the unreliable internet communication system, a handshake

 mechanism with clock-based sequence numbers is used to avoid

 erroneous initialization of connections.

 Precedence and Security:

 The users of TCP may indicate the security and precedence of their

 communication. Provision is made for default values to be used when

 these features are not needed.

p7 The active agents that produce and consume messages are processes.

p7 Since a process may need to distinguish among several communication streams between itself and another process (or processes), we imagine that each process may have a number of ports through which it communicates with the ports of other processes.

p8 The TCP is assumed to be a module in an operating system.

p9 2.4. Interfaces

 The TCP/user interface provides for calls made by the user on the TCP

 to OPEN or CLOSE a connection, to SEND or RECEIVE data, or to obtain

 STATUS about a connection. These calls are like other calls from user

 programs on the operating system, for example, the calls to open, read

 from, and close a file.

 The TCP/internet interface provides calls to send and receive

 datagrams addressed to TCP modules in hosts anywhere in the internet

 system. These calls have parameters for passing the address, type of

 service, precedence, security, and other control information.

p9 2.6. Reliable Communication

 A stream of data sent on a TCP connection is delivered reliably and in

 order at the destination.

p9 2.7. Connection Establishment and Clearing

 To identify the separate data streams that a TCP may handle, the TCP

 provides a port identifier. Since port identifiers are selected

 independently by each TCP they might not be unique. To provide for

 unique addresses within each TCP, we concatenate an internet address

 identifying the TCP with a port identifier to create a socket which

 will be unique throughout all networks connected together.

 A connection is fully specified by the pair of sockets at the ends. A

 local socket may participate in many connections to different foreign

 sockets. A connection can be used to carry data in both directions,

 that is, it is "full duplex".

 TCPs are free to associate ports with processes however they choose.

 However, several basic concepts are necessary in any implementation.

 There must be well-known sockets which the TCP associates only with

 the "appropriate" processes by some means. We envision that processes

 may "own" ports, and that processes can initiate connections only on

 the ports they own. (Means for implementing ownership is a local

 issue, but we envision a Request Port user command, or a method of

 uniquely allocating a group of ports to a given process, e.g., by

 associating the high order bits of a port name with a given process.)

 A connection is specified in the OPEN call by the local port and

 foreign socket arguments.

p12 2.8. Data Communication

 The data that flows on a connection may be thought of as a stream of

 octets.

p46

 A local connection name will be returned to the user by the TCP.

 The local connection name can then be used as a short hand term

 for the connection defined by the <local socket, foreign socket>

 pair.

 Send

 Format: SEND (local connection name, buffer address, byte

 count, PUSH flag, URGENT flag [,timeout])

 This call causes the data contained in the indicated user buffer

 to be sent on the indicated connection.

p47

 Receive

 Format: RECEIVE (local connection name, buffer address, byte

 count) -> byte count, urgent flag, push flag

 This command allocates a receiving buffer associated with the

 specified connection.

�

(p79)GLOSSARY

connection

 A logical communication path identified by a pair of sockets.

Destination Address

 The destination address, usually the network and host

 identifiers.

host

 A computer. In particular a source or destination of messages

 from the point of view of the communication network.

internet address

 A source or destination address specific to the host level.

IP

 Internet Protocol.

module

 An implementation, usually in software, of a protocol or other

 procedure.

octet

 An eight bit byte.

port

 The portion of a socket that specifies which logical input or

 output channel of a process is associated with the data.

process

 A program in execution. A source or destination of data from

 the point of view of the TCP or other host-to-host protocol.

socket

 An address which specifically includes a port identifier, that

 is, the concatenation of an Internet Address with a TCP port.

Source Address

 The source address, usually the network and host identifiers.

TCP

 Transmission Control Protocol: A host-to-host protocol for

 reliable communication in internetwork environments.

Bibliography

[Balzer, 95a] Bob Balzer. CAETI Architecture Issues {Slides}. Computer Assisted Education and Training Initiative. Kickoff Meeting. NASA AMES, October 11-13, 1995.

This presentation gives a high level view of a CAETI learning space architecture that is based on various agents interacting through a MUD.

[Balzer, 95b] Bob Balzer. Architecture Value Added {Slides}. Computer Assisted Education and Training Initiative. Kickoff Meeting. NASA AMES, October 11-13, 1995.

This presentation makes the case for a MUD-based learning space architecture, and summarizes the integrated learning space demo that is planned for spring 1996.

[Balzer, 95c] Bob Balzer. CAETI Architecture Concepts. October, 1995.

This paper is a working draft outlines some of the basic concepts (rooms, agents, objects, simulators) for a long term vision of a MUD-based learning space architecture. This draft is the basis for the formalization in [Smith, 96a], and it is considered in the hierarchy of architectures suggested in [Luckham, 96a].

[Baumgart, 96a] Jim Baumgart, Seth Golub, Eric Sincoff, Andrew Teklemariam, Neil Jacobstein. CAETI Common Object Services Architecture. Sixth Draft - for Review & Comment. February 28, 1996. ìThis draft is for review and comment only, and is not to be redistributed outside of the CAETI Architecture Working Group without authorization.î

This 40 page paper, which has been developed by the EAGIL cluster, is the most detailed architecture document that I have seen so far. ìThe purpose of this document is to propose a minimalist, low-level, data-sharing architecture for building CAETI applications.î -p2. It is a client server architecture that is based on CAETI processes exchanging messages over TCP. It contains a statement of objectives, an architectural overview, and proposals for a common objective services architecture (COSA) and for some domain specific services.

[Bellman, 96a] Kirstie Bellman. {Architecture Slides, 21-28}. Computer Assisted Education and Training Initiative. CAETI Community Meeting, University of Texas, Arlington, March 20-22, 1996. http://www.dmso.mil/CAETI/program/CAETIbrf/CAETIut.ppt {password required}

This part of Kirstieís opening presentation describes the role of architecture in CAETI. Slide 24, ìMinimal Architectural Requirementsî, provides the best current description of the minimal CAETI architecture. Further elaboration of these minimal requirements is given in [Harbison, 96a].

[CAT, 96a] CAETI Architecture Team. CAETI Minimal Architecture with Extensions, Version 1.0, Rev 4. May 8, 1996.

ìThis paper documents the CAETI Minimal Architecture.î It ì.. formally specifies the minimal messaging compliance that developers are asked to achieveî, gives some examples of the messages, lists some basic architectural requirements, and discusses some optional additional services, including name service and security.î

[Coglianese, 95a] Lou Coglianese. Systems Integration {Slides}. Computer Assisted Education and Training Initiative. Kickoff Meeting. NASA AMES, October 11-13, 1995.

This presentation describes the role of the Loral System Integration Team and the computing environment expected in the DoDEA schools.

[Coglianese, 96a] Lou Coglianese, Mark Olson, Robert Pittman, Rich Saxton. Systems Integration Information Package. Loral Federal Systems - Owego. CAETI-LOR-95-01 (Version 1.0). March 11, 1996.

This document describes Loralís system integration plan. ìThe main objective of the system integration process is to create integrated baseline systems for the CAETI schools from the TEEs, IFDs, and the site infrastructure. The system baseline provides both developers and DoDEA the information required to replicate, install and use the CAETI products.î -- p3.

[Finin, 93a] Tim Finin, Jay Weber, Gio Wiederhold, Michael Genesereth Richard Fritzson, Donald McKay, James McQuire, Richard Pelavin, Stuart Shapiro, Chris Beck (The DARPA Knowledge Sharing Initiative External Interfaces Working Group). DRAFT Specification of the KQML Agent-Communication Language plus example agent policies and architectures. June 15, 1993.

ìKQML is intendewd[sic] to be a high-level language to be used by knowledge-based system[sic] to share knowledge at run-time.î Some of the minimal CAETI architecture is based on KQML. See [CAT, 96a].

[Good, 96a] Donald I. Good, Michael K. Smith. A CAETI Architectural Monitor. Computational Logic, Inc. April 12, 1996.

ìThe key idea is to build an architectural monitor that, at least in principle, could be executed to monitor ongoing compliance with the requirements. In addition, the monitor would have a mathematical definition that would enable rigorous analysis of the requirements. We believe that the architectural monitor would be useful in defining the requirements, in establishing a precise build-to specification for implementors and in testing compliance with the requirements.î -- p1

[Good, 96b] Donald I. Good. Message Transport Model 1 of the Minimal CAETI Architecture. Computational Logic, Inc. May 21, 1996.

This note derives a mathematical model of the minimal CAETI architecture from i) Kirstie Bellmanís slide [Bellman, 96a] that introduced the idea of a minimal architecture, and ii) Karan Harbisonís April 14 email [Harbison, 96a] that elaborated on Kirstieís slide. The note also contains a simple simulator of the architecture.

[Good, 96c] Donald I. Good. Message Transport Model 1 of the Minimal CAETI Architecture. Computational Logic, Inc. Work in progress.

This working note is an attempt in progress to build a mathematical model of the minimal CAETI architecture that is based on [CAT, 96a]. This is the first draft document that attempts to described the minimal architecture.

 [Harbison, 95a] Karan Harbison, Bud Hammons, Gail Haddock. CAETI Architecture/Domain Modeling Information {Slides}. Pogo Arch Team/ HIIP Arch Team. University of Texas - Arlington. Computer Assisted Education and Training Initiative. Kickoff Meeting. NASA AMES, October 11-13, 1995.

This presentation describes the potential roles of architecture and domain modeling in CAETI.

[Harbison, 96a] Karan Harbison. Architecture Efforts {CAETI Minimal Architecture Compliance Update}. Email 4/14/96 to caeti@nosc.mil.

This message provides some elaboration of Kirstieís March 20 slide [Bellman, 96a] that describes the minimal architectural requirements.

[Hayes-Roth, 95a] Hayes-Roth, Frederick. Architecture-Based Development & Acquisition -- Where are We and Where are We Going? {Slides}. Computer Assisted Education and Training Initiative. Kickoff Meeting. NASA AMES, October 11-13, 1995.

The presentation gives a DSSA view of software architecture.

[Luckham, 96a] David Luckham, James Vera, Frank Belz(TRW). Towards an Abstraction Hierarchy for CAETI Architectures, and Possible Applications. Program Analysis and Verification Group, Computer Systems Lab, Stanford University and TRW. March 18, 1996.

ìThis draft document proposes a four level abstraction hierarchy for CAETI systems architectures for review and discussion by the CAETI community. Some possible applications are described briefly.î -- Abstract. This paper advocates multiple views of the CAETI architecture. It refers to concepts in [Balzer, 95c] and[Smith, 96a], and it shows how some of the architectural concepts discussed can be represented in Rapide.

[Postel, 81a] Jon Postel. Transmission Control Protocol: DARPA Internet Program Protocol Specification. (RFC 793). Information Sciences Institute, University of Southern California. September, 1981.

[Smith, 96a] Michael K. Smith. MOO Events: Preconditions and Effects. Computational Logic, Inc. 2/22/96.

ìThis document represents a step toward the formalization of LambdaMOO events, including their preconditions and postconditions. The documented events are based on those presented in [Balzer, 95c].î -- Abstract

[Suthers, 96a] Daniel D. Suthers. Abstraction hierarchies for architecture descriptions.

Email to its-commarch, eagil-architecture. May 18, 1996.

This is a follow up to [Luckham, 96a]. The message ìconcernsî the utility of layered architectural descriptions, and discusses what levels of description may be useful.î

[Suthers, 96b] Daniel D. Suthers. Abstraction hierarchies for architecture descriptions.

Email to its-commarch, eagil-architecture. May 18, 1996.

ìTo exemplify the approach discussed in the previous post, here is the beginnings of a layered architecture description.î

[Unknown, 95a] CAETI Home Page. http://triton.dmso.mil/CAETI/ {Password required}

-- Organizations and Groups. http://www.dmso.mil/CAETI/org.html {CAT is not mentioned}

--,-- Architecture/Domain Modeling. http://trexx.uta.edu/~caeti/Workshop/cover.html {Password required}.

 [Unknown, 95b] Software Architecture Technology Guide. http://www.stars.reston.unisysgsg.com/arch/guide.html

ìThis node was developed under a STARS task ... to provide DoD software developers with an overview of software architecture technology and to serve as ìvirtual road mapî to additional web resources for understanding and applying architectural techniques to domain-specific reuse.î -- 3/13/95.

 [Unknown, 96a] CAPER Architecture. Atlanta Subgroup Meeting. March 1-2, 1996. {Slides} http://www.pgc.com/caper

This is a record of the meeting.

 [Unknown, 96b] CAETI System Technical Requirements. Loral Federal Systems - Owego {I think}. FTPed 3/11/96.

 [Unknown, 9x] The Stanford Rapide Project. http://anna.stanford.edu/rapide/rapide.html

CAETI Architecture Working Groups

This is included for completeness. It is current as of approximately May 1, 1996.

CAETI Architecture Team (CAT):

As best I can tell, this consist of the cluster leaders,

 Pullen (CAPER),

 Jacobstein (EAGIL)

 McKay (SNAIR)

 Harbison (ETC)

together with

 Balzer

 Bellman

 Hewitt

 Landauer.

Architecture Working Group:

Who is this? Is it CAT? Does it contain the compliance subgroup? Does

it contain the people in your 4/2/96 teleconference?

Architecture Compliance Subgroup: (As per 3/14/96 email from Baumgart)

 Balzer

 Baumgart (Chair)

 Belz

 Good

 Jacobstein ?

 Landauer

 Luckham

 Saraswat

 Sincoff ?

Architecture Teleconference Group: (This is the group participated in

Harbisonís 4/2/96 teleconference.)

 Balzer

 Belz (absent)

 Coglianese

 Good

 Harbison

 Hewitt (absent)

 Mehrotra

� All three CAETI Transport layers use TCP/IP at some level

CMA Message Transport Model 2

dg � DATE \l �5/31/96� � TIME �1:09 PM�

�PAGE �37�

Page

